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Foreword

The vision of materials with intelligent behavior has been tantalizing material and
computer scientists for many decades. The benefits of such materials, which
would more resemble living systems than classical engineered structures, would
indeed be tremendous: Materials that can sense and change their properties such
as shape, appearance, and other physical properties in response to the environ-
ment would allow us to create structures, robots, and other autonomous systems
that interact with the environment with animal-like agility and with the robust-
ness common to biological, living systems. In the long run, such materials could
even self-assemble and self-heal, and fundamentally change the way how things
are made. This vision is particularly nagging as Nature vividly demonstrates these
possibilities and their feasibility on a daily basis; yet, progress has been slow and
tedious. Unlike conventional engineered structures, Nature tightly integrates
sensors, muscles, and nerves with structure. Examples range from our own skin
that helps us regulate temperature and provides us with tactile sensing at very
high dynamic range to the most complex structure in the known universe, our
brains, and more exotic functionality such as camouflage of the cuttlefish or the
shape-changing abilities of a bird wing.

In computer science, interest into intelligent material goes back to Toffoli’s
concept of “Programmable Matter” in the 1990s, and was accelerated by the
advent of microelectromechanical structures (MEMSs), which has led to the
concept of “smart dust” and the field of sensor networks. At the same time,
advances in composite manufacturing have led to the field of “multifunctional
materials,” and it seems the time has finally come to unite these two fields of
which the present book is a first attempt.

Stefan Bosse, Manuel Collet, Dirk Lehmhus, Walter Lang, and Matthias Busse
present here one of the first attempts to bridge the currently disparate fields of
computer science, robotics, and material engineering. Their diverse backgrounds
are reflected in the organization of this book, which follows the same layered
approach that has become customary to abstract the inner workings of networked
communication from their applications to organize the challenges of material-
integrated intelligence in both material science and computing. Establishing this
common language and hierarchy is an important first step as it allows the different
disciplines to understand where they fit in, the scope of their contribution within
the bigger picture, and where the open challenges are.
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While this view will be very helpful for the two disparate communities to find
common ground, this book does not oversimplify the problem. It remains clear
throughout that material-integrated intelligence and structural functionality are
indeed at odds. Every additional sensor, communication infrastructure, and
computation a computer scientist would wish to integrate into a structure, for
example, to perform structural health monitoring, jeopardizes the very structural
health of the structure. Similarly, adding the capability for structures to morph,
for example, to save fuel during different phases of flight, adds weight to an extent
that very likely outweighs the very savings any morphological change could
possibly provide. While these constraints seem overly limiting, more pedestrian
(in the true sense of the word) applications might not have enough value to justify
multifunctional composites.

Yet, natural systems impressively show us that trade-offs in multifunctionality
with net benefits are indeed possible and often the only way these systems can
survive in a changing environment. It might therefore be worthwhile to put
immediate applications aside and indulge in the intellectual challenges of design
and distributed computation until emerging applications such as robotics,
orthotics, and autonomous systems in general – which will strongly benefit
from material-integrated computation – become more mainstream. This book
provides the red thread for such a pursuit by providing an overview of recent
progress in function scale integration of sensors, power and communication
infrastructure, as well as the key computational concepts that such integration
could enable, bridging the worlds of the continuous, that is material physics, and
the discrete algorithmic world.

Here, one problem becomes very clear: It is not possible to design material-
integrated intelligence without understanding both the underlying material
physics and the algorithms such intelligence requires. Physics determines the
bandwidth, dynamic range, and noise characteristics of sensors and actuators,
which define the available inputs and outputs to an algorithm designer. Likewise,
certain computational problems require a minimum amount of real estate,
energy, and communication bandwidth that the material designer needs to
foresee. These challenges are already well understood in robotics, where they
are reconciled by a probabilistic view on sensing, actuation, and algorithmic
planning. Describing the specific problems that material-integrated intelligence
poses will help the community to recognize the similarities between such
structures and robotics, and possibly help to leverage insights from probabilistic
state estimation, planning, and control that this community has produced in the
past decade.

Combining a physical and a computational perspective in a single book will not
only help this fledgling field to organize key insights but might also serve as a
starting point for a new generation of scientists and engineers who will have their
feet comfortably in both the computational and the physical – a prospect that
offers tremendous opportunities. For example, it is possible to shift computation
into thematerial and vice versa. The cochlea, which effectively performs a discrete
Fourier transform, trades computational with spatial and sensing requirements.
Similarly, insect eyes organize their lenses in spatial arrangements that simplify
the neural circuitry for rectification of the compound signal, an approach that has
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become known as “morphological computation.” Finally, combinations of active
materials can be used to create simple feedback controllers and oscillators.
Innovating in this space will require scientists and engineers that are equally
at ease with materials and computational concepts.

Another area that is currently untapped in material sciences and builds up on
the foundations laid out here is to leverage the principles of self-organization and
swarm intelligence to equip future materials, possibly consisting of thousands of
pin-head sized computing devices, with intelligence. Receiving interest from both
material and computer science, for example, in their study of self-assembly or
pattern formation, also known as “Turing Patterns” (after the computer science
pioneer Alan Turing who first studied such systems), both communities have not
yet connected on creating materials that self-organize – a concept that allows
realizing almost limitless functionality.

Back to the here and now, however, the immediate impact research in material-
integrated intelligence might have is to provide a new platform for material and
computer scientists alike to apply and exchange their tools. Solving the problems
of integrating sensors/actuators, computation, communication, and power into
smart composites and mass producing them will allow us to create sensor
networks and distributed computers of unprecedented scales. Such systems
pose the opportunity to perform model predictive control or machine learning
inside the material, providing unprecedented capabilities and challenges. Like-
wise, applying the full breadth of what is possible computationally will spur the
development of novel sensors and actuators with higher bandwidth, smaller
footprints, and lower energy requirements, eventually approximating and tran-
scending natural systems. In order to get there, readers of this book will need to
set their disciplinary goggles aside and join us in the quest to make materials
computers and computers materials.

Nikolaus Correll
Department of Computer Science

Material Science Engineering
University of Colorado at Boulder

Boulder, CO, USA
February 10, 2016
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Preface

This book addresses a topic that has, to the editors’ knowledge, not been covered
as comprehensively as this before: material-integrated intelligent systems.

The topic links up with recent, current, and emerging trends like smart system
integration, ambient intelligence, or structural electronics. Its background is the
understanding that to obtain truly smart objects, it is simply not sufficient to tag
them with a sensor node and some associated electronics for data evaluation –
nor is it satisfactory to merely embed sensors in materials. Instead, the ultimate
goal is to have materials that actually feel in a manner that can be compared with
our own capabilities as human beings. The skin, its sensory equipment, and the
further processing of data acquired through it is undoubtedly the most referenced
model of such a material: Here we find different types of sensors situated in the
most suitable places and at high resolution wherever necessary – thousands of
them, actually, on your fingertip or on the palm of your hand, capturing pressure
together with its first and second derivatives as well as secondary information like
temperature or humidity.

Besides the sensors, you have filtering of signals, sensor fusion, and information
preprocessing. You have communication of aggregated information to a hierarchy
of higher level control systems – your spinal cord, or ultimately your brain, with
the information passed finally reaching your consciousness.

The complexity of this system is such that research on its basic principles and
capabilities even in humans is an ongoing effort involving researchers from
several disciplines like biology, medicine, or neuroscience, to name but a few.

The aim defines the approaches that lead to its technical realization, and
technology does not differ from biology here: The topic is highly interdisciplinary
irrespective of the world we look at, be it natural or artificial. It requires
contributions, in various fields, of materials science, but also of production
engineering, microelectronics, microsystems technology, systems engineering,
and computer science. In fact, it needs more than contributions, but rather close
cooperation. It thus faces all the challenges transgressing the boundaries of
scientific disciplines commonly entails–starting from a quite natural lack of fully
grasping the capabilities and limitations of neighboring research fields to the
simple problem of scientific languages that just do not match and thus impede
creating the necessary mutual understanding.
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At the same time, the promise linked to solving these difficulties is just about as
large as the challenge. Material-integrated intelligent systems encounter an
economic environment that moves more and more toward computational
capabilities and communication technologies dispersed and networked through-
out our daily environment. The concept of smart dust may be seen as earlier
formulation of this issue. Currently, it is moving back into focus as a potential
facet of the Internet of Things (IoT), today one of the main stimulators of research
in material-integrated intelligent systems.

The associated fundamental technological enablers and their interdependence
is what we primarily intend to illustrate in this book.

With this vision in mind, we have conceived this book, to which several authors
with a broad scientific background have contributed.

Our ambition with it is to help bridge the gaps between the various disciplines
they represent by allowing these eminent scientists to present their own views on
their area’s part in the embracing context.

So whom do we expect to benefit most from this extensive collation of
information?

Naturally, the answer to this question determines the form and content of the
fundamental chapters of our work.

As primary readers, we have professionals in product development and
engineering design in mind who are tasked with the problem of integrating
mechanical and electronic systems in a classic mechatronics approach, but on the
new level of material integration, which requires additional, new solutions in
materials and production processes or data evaluation.

Thus, the perspective of the assumed reader is that of an expert in one of the
technological fields involved who needs to gain insight into the adjacent ones to
be able to devise and evaluate integrated solutions involving several areas. The
background of such a reader can either be academic or industrial. Among the
industrial readership, we particularly hope to gain the interest of potential
applicants of material-integrated intelligent systems: Our book should provide
the necessary pathways and perspectives to help them understand the possibilities
the combination of the current technological state of the art from various
disciplines can offer.

Besides, we have graduate and postgraduate students in mind who seek an
introduction to the field. The character of the book, and the intention to lead
professionals to new realms beyond their usual field of practice, is reflected in the
attempt to structure and formulate the individual chapters in a way that will allow
people with an engineering or natural sciences background to easily follow the
discussion even if it is not their particular area of expertise or application that is
covered.

For reasons of simplicity and easy access, the book is organized in parts that
reflect major research areas. Prior to this, the topic is outlined in an introductory
section (Part One) that explains the term material-integrated intelligent systems
in more detail, puts it in perspective with past, present, and future scientific and
technological trends, and thus provides the motivation for engaging in research
and new technology development.
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Part Two, System Development, assumes the product development perspective
and describes methodologies for designing smart systems on different levels of
abstraction.

Part Three, Sensor Technologies, provides fundamental information about
different types of sensors and discusses the need for adaptation they face in view of
material integration, as well as technological solutions developed toward this end.

Part Four, Material Integration Solutions, swaps perspectives from the elec-
tronics and microsystems technology point of view toward mechanical and
materials engineering. In this part, we consider the integration problem based
on specific material classes (metals, polymers) and the closely associated man-
ufacturing processes.

Part Five, Signal and Data Processing: The Sensor Node Level, describes the
fundamentals of this area of expertise and relates them to specific problems of
material-integrated systems. The perspective is that of the individual, smart
sensor node.

Part Six, Networking and Communication: The Sensor Network Level, extends
the scope toward the combination of several such sensor nodes and thus also
covers information exchange between them, as well as data evaluation in sensor
networks.

Part Seven, Energy Supply, discusses ways of ensuring the availability of
sufficient amounts of energy – and levels of power – for a material-integrated
system to operate, touching upon aspects like storage of energy and management
of resources as well as generation of energy through harvesting or scavenging
approaches.

Part Eight, Application Scenarios, either provides examples of realized mate-
rial-integrated intelligent systems or explains how different areas of application
like Structural Health Monitoring or Human–Machine Interaction and/or coop-
eration could profit from future availability of them.

Common to all parts is a general concept that provides entry points for readers
with diverse backgrounds and thus strongly deviating levels of competence in the
areas covered. In this sense, we do not see our work as giving definite answers
across the width of its scope, but rather as defining and providing the cross-
disciplinary interfaces between the various elements that need to be connected to
generate what is the topic and the vision of this book – material-integrated
intelligent systems.

Putting together this book has required a considerable amount of time and
commitment from all the many people involved. We are thus extremely grateful
to those researchers who have volunteered to supply a contribution to this work.
Essentially, it is their dedication, their effort, their perseverance, and not the least
their patience that have made possible the result you, the reader, can hold in your
hands today.

We are indebted to Dr. Martin Preuss of Wiley-VCH, who discussed the topic,
content, and organization of the book with us at its very beginning and thus
helped create the original framework that has now been realized in the form you,
as reader, are holding in your hands. For this realization, in turn, we owe gratitude
to Nina Stadthaus and Stefanie Volk (Wiley-VCH) who accompanied us
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throughout the whole process of gathering and organizing primary input as well
as secondary information with immeasurable patience, dedication, and a lot of
good advice.

Finally, we acknowledge the financial support of the Federal State of Bremen,
which facilitated the formation and the initial research work of the ISIS (Inte-
grated Solutions in Sensorial Structure Engineering) Sensorial Materials Scientific
Centre at the University of Bremen, without which the achievement this work
represents could not have been accomplished.

Stefan Bosse
Dirk Lehmhus

Walter Lang
Matthias Busse
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1.1 Introduction

Material-integrated intelligent systems constitute materials that are able to “feel.”
This is the shortest possible definition at hand for the subject of the present book.
What it implies will be discussed below, while detailed descriptions of individual
aspects and application scenarios will follow in its main parts.

As a concept, material-integrated intelligent systems have implicitly been
around for quite some time. To a considerable degree, this is because the
concept as such is not so much a human invention, but rather something that is
deeply rooted in nature: The human skin and the human nervous system are the
typical examples cited pertaining to material-integrated intelligent systems,
such as sensorial materials [1–3], robotic materials [4], nervous materials [5], or
sensor-array materials [6].

These natural models taken together nicely illustrate the differences between
materials with integrated sensor(s) and material-integrated intelligent systems:
For one thing, the skin contains a multitude of sensors which do not only capture
force or pressure, but also additional aspects like the first and second derivative of
pressure or temperature. At the same time, the impression we get when we touch
an arbitrary surface is not that of a separate awareness of these factors, but a
combined one that is derived from fusion of sensory information.

Besides, we do not base the decisions we make in response to a tactile
sensation on quantitative values of pressure, temperature, and so on, and on a
deterministic model that links these values to an intended action and its
potential outcome. Instead, we rely on experience, that is, on a learned
relationship between an action and its outcome in relation to the associated
sensory information in one way or another. Translated to technical terms, we
thus follow a model-free approach.

Material-Integrated Intelligent Systems: Technology and Applications, First Edition.
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 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.

3



Having said this, we can derive a list of characteristics a material would need for
us to concede that it can actually “feel.” Such a material must be capable of

� capturing sensory data;� aggregating data through some local preprocessing, performing data reduction
of individual data points;� further processing this data to derive some higher-level information, gaining
knowledge;� using this knowledge for decision-making, putting it to some internal/local use,
or communicating it to higher system levels;� coping with damage by being dynamic and reconfigurable; and� achieving a state of awareness of host material and environment, that is, the
derivation of a context knowledge.

If the above list represents a functionality-centered perspective, the question
that immediately arises is how a technical implementation of this concept could
be achieved, and which research domains would need to contribute to it.

On a generic level, material-integrated intelligent systems follow the universal
trend in the microelectronics industry, which is typically described as having two
orthogonal, primary directions: on the one hand, miniaturization or the “more
Moore” development line, and on the other, diversification through the integra-
tion of additional, usually analog, functionalities such as sensing, energy supply,
and so on – the “more than Moore” approach. In both cases, reference is made to
Moore’s law, which predicts (from a 1965 point of view) that transistor count in
densely packed integrated circuits would double every 2 years, and which has
since then approximately been met by actual developments, although with some
indications of slowing down since about 2011. Technologically, “more Moore” is
usually associated with system on chip (SoC) solutions, whereas “more than
Moore” is linked to system in package (SiP) technologies. However, both merge
diagonally combining both SoC and SiP approaches to create higher value
systems. Clearly, this is the domain into which material-integrated intelligent
systems fall. As a consequence, the following research topics need to be addressed
in their development:

� miniaturization on component and system level to limit “footprint” within host
material;� system resilience against effects of processing conditions during integration;� system compliance with host material properties in the embedded state;� energy supply solutions that support autonomy, like cooperative energy
harvesting and storage, and (intelligent) management of resources;� reliable and robust low power internally and externally directed communica-
tion approaches;� distributed, reliable, and robust low power data evaluation; and� multiscale design methodologies that span the scope from chip design to smart
products and environments.

Mark Weiser, in his landmark 1991 article that predicted many evolutions
in computer science we have witnessed since, has set the scene by stating that
“in the 21st century, the technology revolution will move into the everyday, the
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small and the invisible” [7]. Weiser thus anticipated a development that is
connected to terms such as ambient intelligence and ubiquitous or pervasive
computing.

Material-integrated intelligent systemswill both profit from and contribute to the
realizationof thisprediction through their potential of endowingmanyof thepassive
materials surrounding us today with perceptive capabilities, and ultimately even
adaptive behavior. A large part of the novelty of this approach has its foundations in
the notion that miniaturization of systems will allow integration on a level that
provides the added functionality without compromising suitability for the primary
role to be fulfilled by thematerial in question.A prominent example in this respect is
structural healthmonitoring (SHM). This application scenario is relevant for safety-
critical, load-bearing structures. Safety can be enhanced, or safety factors relaxed, if
the exact structural state is known at any moment in time. If material-integrated
intelligent systemswere selected for this task, a necessary prerequisite would be that
the systems themselves do not adversely affectmechanical characteristics of the host
material. In other words, the materials designed thus should not afford considering
any property degradation caused by the material-integrated systems during the
layout of the structure for its primary task. In a further evolution of the concept, the
materials themselves could thus be envisaged as semifinished materials in the same
way as sheet metal: Their capabilities, including their smartness, would be available
as an asset not necessarily targeted at a specific application, but providing for several
ones. For production of material-integrated intelligent systems, such a scenario
could open up economy of scale effects significantly enhancing their economic
viability.At the same time, thiswouldaffordproduction techniques able tocopewith
the associated large production volume.

It has been suggested that the implementation of material-integrated sensing
can either follow a top-down or a bottom-up approach [2]. Focusing specifically
on the sensing function, Lang et al. [8] propose an even finer distinction, which
demarcates a top-down as opposed to a bottom-up approach:

� top-down approach:
– hybrid integration
– local additive buildup� bottom-up approach:
– generic (intrinsic) sensing properties of materials
– local growth of sensors using, for example, bioinspired processes

From our current perspective, Lang et al.’s proposal excludes the intelligent
side of material-integrated intelligent systems and its prerequisites like energy
supply by concentrating on the transducer effect and the hardware to implement
it. Specifically, the bottom-up approaches still fail to offer solutions that could
provide these system components. This is apparent particularly for the generic
sensing properties of materials, which remain ineffectual even as sensor until at
least some means of detecting (i.e., sensing) the intrinsic effect is added.

The example shows that at least on the level of full intelligent systems, bottom-
up approaches do not yet respond satisfactorily to the questions of realization.

An exception, though a theoretical one, is the notion of programmable matter
proposed by Toffoli and Margolus. Their original concept assumes spatially
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distributed computing elements similar to smart sensor nodes capable of nearest
neighbor interaction only. Together, they form a material with the inherent
capability of information processing. Practically, this concept is reminiscent of
physical realizations of cellular or lattice gas automata [9,10].

Later, alternative or extended definitions of programmable matter stress the
ability of such materials to alter their physical characteristics in a controlled
fashion – controlled either by a user from the outside or autonomously from
within the material. In the latter case, the programmable matter makes use of its
data evaluation capabilities to respond, for example, to sensor signals. Under this
headline, several materials have been understood to represent forms of program-
mable matter. Material-integrated intelligent systems would fall into this cate-
gory, too. Since the wider definitions of programmable matter include spatial
reconfiguration building on autonomous objects (cells) as building blocks besides
information processing, sensing, actuation, and adaptivity, both sensorial materi-
als [1] and robotic materials [4] can be seen as intermediate-level representatives
of this overall class of intelligent materials.

Realization of programmablematter thus depends on the scope of properties and
the definition adopted. The full spectrum is usually represented by the material
being built up of individual, autonomous units of microscopic scale that form the
matter itself by docking to each other in different configurations, an ability that
requires some relative locomotion, too. “Utility fog” is another designation for a
system of microscale autonomous units having such abilities, with the spatial
rearrangement not based on the so-called “foglets” as the smart units, but on the
flow of the fluid in which they move. Reaching a certain macroscopic shape thus
does not have to dependondeliberatelymoving to a certain location, but can rely on
making or refusing connections once the opportunity is there [11]. To date, to the
knowledge of the authors, no physicalmaterial is available that combines the full set
of characteristics envisaged by Toffoli or Hall [10,11].

Obviously, much nearer to implementation is the top-down approach, which
essentially coincides with the intermediate, diagonal path in between the pure “more
Moore” and the “more than Moore” trend: What the term top-down implies is a
hybrid integration approach in which suitable components are adapted to material
integration needs and combined to form the required smart sensor network.

First practical developments leading toward sensor nodes combining subsets of
the features required by material-integrated intelligent systems – above all, a
minute size, a certain level of energy autonomy, and data evaluation as well as
communication capabilities – sailed under the “smart dust” flag from the end of
the 1990s to the early twenty-first century [12]. Warneke et al. concentrated on
developing, as they termed it, a “cubic millimeter-sized computer” fully endowed
with sensing, energy storage, and data evaluation, plus communication that could
create an ad hoc network when dispersed, like dust, in a given environment.
Clearly, a handful of smart dust sensor nodes embedded in a host material would
conform to our own definition of material-integrated intelligent systems and
sensorial materials.

Figure 1.1 provides an overview of the main elements of such a system, which
mostly form part of the smart dust mote concept, too. The sensorial material as
such consists of a material-integrated network of smart sensor nodes that may
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