
DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
A Unified Distributed Computing Framework with Mobile Multi-Agent
Systems and Virtual Machines For Large-Scale Applications: From the
Internet-of-Things to Sensor Clouds

Stefan Bosse
University of Bremen, Dept. of Mathematics & Computer Science, Robert Hooke Str. 5, 28359 Bremen, Germany

Abstract: A novel and unified design approach for reliable dis-
tributed and parallel data processing in large scale networks
consisting of high- and of low-resource nodes (ranging from ge-
neric computers to microchips) using mobile agents is intro-
duced. This approach enables the development of sensor clouds
of the future integrated in daily use computing environments
and the Internet. Agents can migrate between different hard-
ware and software platforms by migrating the program code of
the agent, embedding the state and the data of an agent, too.
Agent mobility crossing different execution platforms, agent in-
teraction by using tuple-space databases, and agent code recon-
figuration enable the design of reliable distributed sensor and
information processing networks. The Agent Processing Plat-
form can be implemented in hardware (microchip level), soft-
ware (embedded system), WWW using JavaScript (including
client-side browser applications), and simulation. All implemen-
tations offer compatibility on operational and communication
level. A graph-linked multi broker service is established for the
JavaScript processing platform class to provide service ports
and the access of the agent platform from the outside in browser
applications, which can usually only act as clients and are usual-
ly hidden by a private network and firewalls.

I.INTRODUCTION

Trends recently emerging in engineering and micro-sys-
tem applications such as the development of sensorial
materials [3][11] show a growing demand for distributed
autonomous sensor networks of miniaturized low-power
smart sensors embedded in technical structures. Multi-agent
systems (MAS) can be used for a decentralized and self-
organizing approach of data processing in a distributed sys-
tem like a resource-constrained sensor network (discussed in
[11] and [12]), enabling smart and adaptive distributed infor-
mation extraction, for example, based on pattern recognition
(e.g., referring [13] and [14]), by decomposing complex
tasks in simpler cooperative agents. It can be shown that
MAS-based data processing approaches are scalable from
generic computer to single microchip level platforms which
can aid the material-integration of Structure and System
Monitoring applications. One one hand there are currently
only few proposed agent processing platforms that can be
scaled to microchip level, and on the other hand there are no
unified solutions to integrate these low-resource nodes in
large-scale networks and the Internet.

In [11] the agent-based architecture considers sensors as
devices used by an upper layer of controller agents. Agents
are organized according to roles related to the different
aspects to integrate, mainly sensor management, communica-

tion and data processing. This organization isolates largely
and decouples the data management from changing net-
works, while encouraging reuse of solutions.

The deployment of agents can overcome interface barriers
and closes the gap arising between platforms and environ-
ments differing considerably in computational and
communication capabilities, enabling, for example, the inte-
gration of sensor networks in large-scale World-Wide-Web
(WWW) applications and providing Internet connectivity,
shown in Fig. 1. This is addressed in this work by using a
unified reactive agent-based programming and interaction
model, independent of the underlying processing platform.
For the proposed advanced agent processing platform archi-
tecture there exist suitable hardware (microchip), software
(C, OCaML, JavaScript), and simulation model implementa-
tions, which can be functionally interconnected in networks
creating one big machine. They are compatible on the opera-
tional and execution level, thus, agents can migrate between
these different implementation platforms.

Agent mobility crossing different execution platforms and
agent interaction by using tuple-space databases and global
signal propagation aid solving data distribution and synchro-
nization issues in the design of distributed sensor networks.

Usually sensor processing and information computation
require known world models including mechanical models,
for example, in load monitoring use cases of technical struc-
tures. Self-organizing MAS are useful in unreliable and
partially unknown environments, which can overcome world
environment and mechanical model limitations successfully.

Adaptation of the agent behaviour, i.e., based on learning,
offers a reliable reaction mechanism in the presence of envi-
ronmental changes, e.g., changes in network connectivity or
node failures. This adaptivity is addressed in this work by a
graph-based behavioural reconfiguration at run-time. Mobil-
ity - the ability to migrate a agent processing unit to a
different execution platform and node - and autonomy
together with a high degree of independency from the
processing platform ensure robust data processing in large-
scale networks.

It can be shown that agent-based computing can be used to
partition complex computations in off-line and on-line (in
network and real-time) parts resulting in an increased overall
system efficiency (performance and energy demands) and a
unified programming interface between off- and on-line
parts. One example are Load and Structural Health Monitor-
ing (LM/SHM) systems, outlined in [2].
an Bosse - 1 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
Figure 1. Deployment of Agents in Sensor Clouds and Internet Applications

One major goal of the deployment of MAS is overcoming
heterogeneous platform and network barriers arising in large
scale hierarchical and nested network structures, consisting
and connecting, e.g., the Internet, sensor networks, body net-
works, production and manufacturing Cyber-Physical
System (CPS) networks, shown in Fig. 2 on the left. The
large diversity of execution platforms, network topologies,
services provided by network nodes, and the programming
environments require a unified and abstract behavioural and
structural representation model. The Bigraphical model pro-
posed by Robin Milner models the entire "computing"
environment with place and link graphs, composing finally
bigraphs [15], shown on the right of Fig. 2. They include
agents, and they are offering a unified model and platform for
ubiquitous systems and the foundation for an Ubiquitous
Abstract Machine, and supporting reconfigurable spaces
(dynamic topologies). Bigraphs virtualize communicating
processes (agents) and information objects (tuple-spaces),
and they originate in process calculi for concurrent sys-
tems, especially the pi-calculus [16] and the calculus of
mobile ambients [17] for modelling spatial configurations of
networks with a dynamic topology.

The environment consists of places where computation
occurs, e.g., computers, agents, rooms, buildings, machines,
and so on. The links are abstract, providing the possibility of
interaction between different places, i.e., transferring of
agents and their mobile processes. Agents are treated as
active computational units. Places introduce spatial and logi-
cal bindings. Bigraphs allow the nesting of nodes and places,
natural for many real-world computing environments, and
they can be applied for wide reactive systems. All nodes have
a fixed number of ports, providing an endpoint for links.

Agents have two ports: a processing port link and an interac-
tion (communication) link. Bigraphs, which represents the
system state, can be modified by the application of reaction
rules, which changes the linking and place relations.
Bigraphs can be composed of other bigraphs matching inner
and outer interfaces.

A link is a hyperedge connection which connects nodes,
outer, and inner names, where names are open linkings that
support additional connectivity, i.e., used for the dynamic
composition of bigraphs at "run-time". Connectivity not only
provides the platform for agent migration between different
places, it provides information exchange, which is provided
here by place-bounded tuple-spaces and signals. Migration of
mobile processes is just another form of interaction with and
the modification of the environment.

To adapt this Bigraphical Reactive System (BRS) model
to a MAS it is necessary to distinguish subjects (entities
which can perform actions, the agents) and objects (here data,
tuples, tuple-spaces, signals, and processing platforms
themselves).
The novelty of this work can be summarized as follows:

• A unified Agent design and processing framework basing
on a reactive activity-transition agent behaviour and pro-
gramming model. Agent interaction is provided by tuple
spaces and signal propagation between agents.

• Stack based Virtual Machines (SVM) are used to execute
optimized program code embedding the agent behaviour,
data and control state in code frames

���

�
� �����

����	
 �	��

������� ���	
�
��

�		���

�������� ����
��

�		���

���

��

�

�	���� ��
���

�	�����

����
�

�

�

��

��

��

�� ��

��

�
���
����

���

�
�

�

�

�

�

��
an Bosse - 2 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
Figure 2. From physical maps (left) to unified logical maps: link (right, bottom) and structure place (middle, bottom) graphs
composing bigraphs (right, top) [S: Sensor, T: Technical Structure, M: Mobile Device, N: Net. Router, B: Building, R:
Room, C: Computer, A: Agent]

• The SVM is operating system independent and can be
implemented directly in hardware and software including
JavaScript

• The JavaScript implementation of the SVM enables the
integration of sensor networks and agent-based sensor and
information processing in the Internet domains.

• The SVM can be embedded in HTML content and turns a
browser in an agent processing platform.

• A capability-based Remote Procedure Call (RPC) com-
munication interface and a distributed graph-linked broker
service enables the deployment of client-side applications
like browser as agent processing platforms.

II.THE STATE-BASED REACTIVE AGENT BEHAVIOUR
MODEL AND AAPL PROGRAMMING LANGUAGE

The agent model summarized in this section (for details
see [1][3][4]) bases on the mobile processes model intro-
duced by Milner [16] several decades ago. An agent can be
considered as a computational unit situated in an environ-
ment and world, which performs computation, basically
hidden for the environment, and interacts with the environ-
ment to exchange basically data. A common computer is
specialised to the task of calculation, and interaction with
other machines is encapsulated by calculation and performed
traditionally by using messages. An agent behaviour can be
reactive or proactive, and it has a social ability to communi-
cate, cooperate, and negotiate with other agents.
Proactiveness is closely related to goal-directed behaviour
including estimation and intentional capabilities.

II-A. Activity-Transition Graphs
The behaviour of an activity-based agent is characterized

by an agent state, which is changed by activities. Activities
perform perception, plan actions, and execute actions modi-
fying the control and data state of the agent. Activities and
transitions between activities are represented by an activity-
transition graph (ATG). The transitions start activities com-
monly depending on the evaluation of agent data (body
variables), representing the data state of the agent. The ATG
behaviour model is fundamental for Activity-based Agent
Programming Language (AAPL).

An activity-transition graph, related to the agent classes,
discussed later, consists of a set of activities A={A1,A2,..},
and a set of transitions T={T1(C1),T2 (C2),..}, which repre-
sent the edges of the directed graph. The execution of an
activity, composed itself of a sequence of actions and compu-
tations, is related with achieving a sub-goal or a satisfying a
prerequisite to achieve a particular goal, e.g., sensor data
processing and distributions.

Usually agents are used to decompose complex tasks in
simpler ones. Agents can change their behaviour based on
learning and environmental changes, or by executing a par-
ticular sub-task with only a sub-set of the original agent
behaviour.

An ATG describes the complete agent behaviour. Any
sub-graph and part of the ATG can be assigned to a subclass
behaviour of an agent. Therefore modifying the set of activi-
ties A and transitions T of the original ATG introduces
several sub-behaviour for implementing algorithms to satisfy
a diversity of different goals. The reconfiguration of activi-
ties A’={A1 ⊆ A, A2 ⊆ A, ..} from the original set A and the

C

A

R
B

M
T

S

A

A

S C

S
A

A

v1

v2
v3

v4

v5

v6

v7
v8

v9

v10

v11

v12

v14

S

v14

v13

v12

v9

v10

v11

v2

v1

v4

v3

v6

v7 v8

v9

v2

v13

v5

v16

v10

v12

v6

v8

v1 v7

v3v3

v4
v11

v14

v15

v15

v15

v13
A

v16

v16

N

v5
an Bosse - 3 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
modification or reconfiguration of transitions T’={T1,T2,..}
enable dynamic ATGs and agent sub-classing at run-time.

II-B. The Activity-based Agent Programming Language
(AAPL)

The AAPL programming model should optimally match
the requirements of MAS deployed in unreliable sensor and
generic distributed networks, keeping low-resource nodes
with low computational power in mind. On one hand, AAPL
should reflect the core concepts of agents, on the other hand
AAPL should provide core concepts of traditional program-
ming language to ease the programming of widely used
algorithms.

The agent behaviour, perception, reasoning, and the action
on the environment are encapsulated in agent classes, with
activities representing the control state of the agent reason-
ing engine, and conditional transitions connecting and
enabling activities. Activities provide a procedural agent
processing by a sequential execution of imperative data
processing and control statements. Agents can be instantiated
from a specific class at run-time. A multi-agent system com-
posed of different agent classes enables the factorization of
an overall global task in sub-tasks, with the objective of
decomposing the resolution of a large problem into agents in
which they communicate and cooperate with one other.

AAPL supports the following statements and constructors:

• Agent Class Definition consisting of body variables,
activities, transitions, handlers, and common functions.

• Computational and control flow statements: assignment,
branches, loops, exception handling

• Cooperation and Communication with tuple spaces and
signal messages (carrying simple data)

• Agent instantiation from agent classes, forking, destroy-
ing

• Agent mobility by migration
• Agent behaviour modification (e.g., ATG reconfigura-

tion)

II-C. Multi-Agent Interaction
In parallel and distributed systems the communication,

synchronization, and data exchange of a collection of data
processing units (processes or agents) gains significant
importance. A common approach for parallel systems is a
shared memory based communication paradigm, but which
generates a high computational dependency of the processing
units among themselves and regarding the platform. Loosely
coupled distributed systems like MAS require a different
communication strategy.
Tuple-Spaces. One well known and common distributed
interaction model is the tuple-space. Agents can communi-
cate with each other by accessing a tuple space database
service available on each network node and that is provided
by the agent processing platform. A tuple space is a logically
shared memory and is used for synchronized data exchange
between producer and consumer, a common approach for
solving communication problems of loosely coupled autono-

mous or semi-autonomous processing units. Tuple spaces are
generative, which means a tuple can survive the creator
beyond its lifetime.

A tuple space is basically a shared memory database used
for synchronized data exchange among a collection of indi-
vidual agents, which was proposed in [18] and [19] as a
suitable MAS interaction and coordination paradigm. The
scope and visibility of a tuple space database can be unlim-
ited and visible and distributed in the whole network, or
limited to a local scope, e.g., network node level. A tuple
space provides abstraction from the underlying platform
architecture, and offers a high degree of platform independ-
ency, vital in a heterogeneous network environment.

For the sake of simplicity the scope of a tuple space can be
limited to the node boundary, such that there are multiple
tuple spaces distributed in the network. Information can be
carried by mobile agents between nodes. A tuple space com-
munication model has the advantage of shielding the
underlying node and agent processing platform. Access of
tuple spaces require only a small set of simple operations
{out, in, rd, try_in, try_rd, rm}, which transfer tuples
between a producer or consumer and the database. Since
tuples consist of type-tagged values and patterns the tuple
space communication is type-safe and strong computational
bindings can be avoided.

AAPL agents have different ports in terms of the Bigraph
model. One static port is the platform link, required to exe-
cute an agent process. Another port is used for the linking of
an agent with a tuple-space, with #=1. An AAPL agent can
have only one tuple-space access and link at any time maxi-
mal. The propagation of signals introduce further ports and
dynamic links to other agents, with #=0..n, shown in Fig. 3.

The communication links introduce virtual domains, in
Fig. 3 these are the agent groups {A2, A3, A4} and {A5, A6}.
These virtual domains are dynamic, regarding the spatial
location and extension, and the agents which are part of the
virtual domain. Often agent parent-child trees spawn the vir-
tual domains using signal interaction, but agents of initially
different virtual domains can interact by using the tuple-
spaces, extending and merging different virtual domains. The
spatial extension of virtual MAS domains is constrained by
the connectivity graph of the processing nodes.

Signal propagation from a source to a destination agent
requires the connectivity of nodes if the agents are executed
on spatially different nodes. Tuples stored in tuple-spaces are
persistent. That means a tuple t, which was produced by an
agent Ag1 and stored in a tuple-space TS1, and agent Ag1 is
finally migrating to another node location, can be consumed
by a different agent Ag2, now having a historical relation and
link to the other agent Ag1.
an Bosse - 4 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
Figure 3. AAPL agents in the Bigraph Model with a bottom port for the APP link and top port for tuple space and signal link
ports. Shown are two connected nodes. [A: Agent, APP: Agent Processing Platform, TS: Tuple Space]

Signals. In contrast, signals, which can carry additional sca-
lar data values, can be used for local (in terms of the node
scope) and global (in terms of the network scope) domain
agent interaction. In contrast to the anonymous tuple-space
interaction, signals are directly addressed to a specific agent
or a group of agents. The delivery of signals is not reliable in
the case the agents raising and receiving the signal are not
processed on the same node. An agent being ready to receive
signals have to provide a signal handler for this signal, a
function that is executed asynchronously to the agent ATG
execution.

III.THE AGENT CODE PROCESSING PLATFORM

 In this work, the agents are implemented with Agent
Forth program code that is executed on virtual stack
machines, which can be implemented alternatively on hard-
ware (System-on-Chip), simulation, and software level,
which can be embedded in microcontroller, desktop applica-
tions, web applications, or server programs. The agent
program code (detailed discussion can be found in [1]) is a
self-containing and self-initializing unit embedding the (pri-
vate) agent data and the current control state of the agent,
which simplifies migration significantly. This machine pro-
gram is encapsulated in code frames with a specific layout.
The program is able to modify itself by using code morphing.
This approach leads to a low computational dependency from
the current execution environment, which is vital to strong
heterogeneous environments. There is only a small set of
knowledge about the program which is required by the VM to
execute the agent program, and vice versa. Migration of
agents requires only the transfer of the code frame from one
platform to another. The data and control state of an agent
program is stored in the code frame, too.

There are two different Agent Forth levels, one supporting
high-level constructs like loops and branches (AFL), and one
low-level machine sub-set (AML) that can be directly exe-
cuted by the AFVM platform. AFL has similar operational
semantics than AAPL. Thus the AAPL agent class behaviour
definition can be directly compiled to the AFL level, finally
compiled to AML with a specific code frame layout.

In Tab. 1 there is an example for the AAPL behaviour
model of a simple explorer agent that is sent out from an
agent on a specific network node. The explorer agent has the
goal to find another node having a specific feature that is
stored in the (local) tuple space database. If the explorer
agent found the feature (activity check), it will return the
original root node and stores the feature in the tuple space
with the relative delta position of the node where the feature
tuple was found (activity deliver). The explorer agent
moves through the network in a random direction until a
maximal number of hop counts is reached (parameter radius,
activity migrate). The respective AFL programs reflects
roughly the operational semantics and structure of the AAPL
program source. The compile AML machine program that
can be executed by the AVM consists of a boot section at the
beginning of the code frame, followed by a data section stor-
ing the private agent variables and parameters. Finally all
activities and the transition table concludes. The entire
machine program requires only 318 words (636 bytes for a
16bit machine), which can be efficiently transferred between
different processing hosts.

III-A. Platform Architecture
The virtual machine (discussed in depth in [1]) executing

tasks bases on a traditional FORTH processor architecture
and an extended zero-operand word instruction set
(αFORTH). Most instructions operate directly on the data
stack DS and the control return stack RS. A code segment CS
stores the program code with embedded data. The program is
mainly organized by a composition of words (functions). A
word is executed by transferring the program control to the
entry point in the CS; arguments and computation results are
passed only by the stack(s). There are multiple virtual
machines with each attached to (private) stack and code seg-
ments. There is one global code segment CCS storing global
available functions and code templates which can be
accessed by all programs. A dictionary is used to resolve
CCS code addresses of global functions and templates.
an Bosse - 5 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
AAPL AFL AML (ASM)

agent explorer(radius) =
 var found,dir, delta,
 delta0, hop, feat;

 activity init =
 found:=false; delta:=(0,0);
 dir:=Random{NORTH,SOUTH,..};
 end;

 activity migrate =
 delta:=delta+Delta(dir);
 hop:=hop+1;
 moveto(dir);
 end;

 activity check =
 found:=try_rd(FEATURE,feat?);
 if found then
 delta0:=delta;
 dir:=Opposite(dir);
 end;
 end;

 activity goback =
 delta:=delta+Delta(dir);
 moveto(dir);
 end;

 activity deliver =
 out(FEATURE,delta0,feat);
 end;

 activity die =
 kill($self);
 end;

 transitions =
 init ‐> migrate;
 migrate ‐> check;
 check ‐> goback : found;
 check ‐> migrate:
 not found and radius>hop;
 check ‐> die: radius=hop;
 deliver ‐> die;
 goback ‐> deliver:
 delta=(0,0);
 goback ‐> goback:
 delta<>(0,0);
 end;
end;

enum features FEATURE SENSOR;
par radius int
var found bool
var dirx int var diry int
var deltax int var deltay int
var delta0x int var delta0y int
var hop int var feat int

:*init
 0 hop ! false found !
 0 deltax ! 0 deltay !
 ‐1 1 random dirx !
 ‐1 1 random diry !
;
:*migrate
 dirx @ deltax @ + deltax !
 diry @ deltay @ + deltay !
 hop @ 1 + hop !
 dirx @ diry @ move
;
:*check
 FEATURE 0o{1,4} 0 tryin
 if
 feat ! true found !
 deltax @ delta0x !
 deltay @ delta0y !
 dirx @ negate dirx !
 diry @ negate diry !
 then
;
:*goback
 dirx @ deltax @ + deltax !
 diry @ deltay @ + deltay !
;
:*deliver
 FEATURE delta0x @ delta0y @
 feat @ 0o{1,1,1,1} out
;
:*die
 ‐1 kill
;

:%trans
 |init 1 ?migrate .
 |migrate 1 ?check .
 |check found @ ?goback
 radius @ hop @ > ?migrate
 1 ?die .
 |goback deltax @ 0 =
 deltay @ 0 = and ?deliver
 1 ?goback .
 |deliver 1 ?die .
;
trans

BOOT [000000+0]
LUT LUT [000016+2]
PAR radius [000090+3] #1
VAR found [000094+3] #2
VAR dirx [000098+3] #3
VAR diry [000102+3] #4
...
0000 [003012] : SETLUT 18
0001 [006100] : NOP
0002 [006100] : NOP
...
0014 [001002] : BRANCH 2
0015 [000e11] : CALL 17
0016 [007a00] : LUT
0017 [008048] : VAL 72
0018 [008002] : VAL 2
0019 [000000] : DATA
0020 [000000] : DATA
0021 [000000] : DATA
...
0132 [007400] : DEF
0133 [00800b] : VAL 11
0134 [008017] : VAL 23
0135 [008000] : VAL 0
0136 [000809] : REF 9
0137 [006600] : STORE
...
0199 [007400] : DEF
0200 [00800d] : VAL 13
0201 [00801d] : VAL 29
0202 [008000] : VAL 0
0203 [00800c] : VAL 12
0204 [008000] : VAL 0
0205 [007d00] : IN
0206 [002018] : BRANCHZ 24
...
0269 [007600] : TRANS
0270 [008011] : VAL 17
0271 [00802c] : VAL 44
0272 [006100] : NOP
0273 [006100] : NOP
0274 [006100] : NOP
0275 [006100] : NOP
0276 [000a0b] : TCALL 11
0277 [008001] : VAL 1
...
0314 [006e00] : END
0315 [006000] : EXIT
0316 [00800f] : VAL 15
0317 [00ffff] : VAL ‐1
0318 [005c00] : BRANCHL

Table 1. The AAPL behaviour (simplified) and the compiled AFL/AML programs of a simple explorer agent that explores the
network neighbourhood for a significant feature value. If it founds the feature related to a value, it will notify its root node. A
two-dimensional regular mesh network with cartesian coordinates is assumed.
an Bosse - 6 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
The program code frame of an agent consists basically of
four parts: 1. A look-up table and embedded agent body vari-
able definitions, 2. Word definitions defining agent activities
and signal handlers (procedures without arguments and
return values) and generic functions, 3. Bootstrap instruc-
tions which are responsible to setup the agent in a new
environment (i.e., after migration or on first run), and 4. The
transition table calling activity words (defined above) and
branching to succeeding activity transition rows depending
on the evaluation of conditional computations with private
data (variables). The transition table section can be modified
by the agent by using special instructions. Code morphing
can be applied to the currently executed code frame or to any
other code frame of the VM.

Each VM processor is connected with the agent process
manager (PM). The VM and the agent manager share the
same VM code segment and the process table (PT). The proc-
ess table contains only basic information about processes
required for the process execution.

Commonly the number of agent tasks NA executed on a
node is much larger than the number of available virtual
machines NV. Thus, efficient and well-balanced multi-task
scheduling is required to get proper response times of indi-
vidual agents. To provide fine grained granularity of task
scheduling, a token based pipelined task processing architec-
ture was chosen. A task of an agent program is assigned to a
token holding the task identifier of the agent program to be
executed. The token is stored in a queue and consumed by the
virtual machine from the queue. After a (top-level) word was
executed, leaving an empty data and return stack, the token
is either passed back to the processing queue or to another
queue (e.g., of the agent manager). Therefore, the return from
an agent activity word execution (leaving empty stacks) is an
appropriate task scheduling point for a different task waiting
in the VM processing token queue. This task scheduling pol-
icy allows fair and low-latency multi-agent processing with
fine grained scheduling. Furthermore, this kind of task sched-
uling enables the JavaScript implementation, discussed in
Sec. IV-E..

IV.THE WEB PLATFORM

The migration and mobility of agents is handled basically
by the agents themselves, and there is no advanced routing
provides by the platform. They make decisions about the
migration direction and the selection of neighbour nodes,
usually basing on some geometrical structures given by the
network topology. For example, a material-integrated sensor
network embedded in a wind energy wing used for Load
Monitoring has a mesh-like network topology consisting of
nodes that are connected with their immediate neighbours.
Delivering of sensor data to dedicated computing nodes can
be performed simply by travelling to the outside of the net-
work and by searching. In the WWW and Internet context
this geometrical structure and the neighbourhood connectiv-
ity do not exist, or at least they are not visible, increasing the
decision and reducing the knowledge space of agents signifi-
cantly. First of all, the migration decision of agents must base

on different features and knowledge. Furthermore, the Inter-
net consists of two different kinds of network nodes: Nodes
capable of providing a public visible service, called servers,
and nodes that cannot publish server ports. But in distributed
systems each node must be capable of offering services. Two
computers can only connect if at least one computer has pub-
lic server ports, otherwise an external brokerage service is
required. Web browser are usually processed on client com-
puter nodes and are not visible in the network. Therefore,
agents can’t select a client-interface-only node or process for
migration directly and autonomously due to the missing visi-
bility in the communication network, as this is the case in
traditional sensor or embedded networks.

Two main issues arising in Internet applications using
mobile agents must be addressed:

1. The definition and the knowledge representation of vir-
tual/artificial neighbourhood connectivity in loosely cou-
pled and hierarchical graph-based networks based on
semantic rather on physical connectivity.

2. The visibility and deployment of pure client-side applica-
tions like Web browsers and computers hidden in private
or restricted networks as agent processing platforms capa-
ble of receiving, processing, and sending of agents.

To enable the distributed agent processing in browser and
applications running on generic computers connected by the
Internet, the previously introduced Agent Forth Virtual
Machine platform was implemented in JavaScript that can be
executed either by a node.js interpreter or by any browser
capable to execute JavaScript code. The AFVM was inte-
grated in a distributed operating system layer, also
implemented entirely in JavaScript, discussed in the follow-
ing subsections. The transition form peer-to-peer networks to
routed and hierarchical networks like the Internet requires
some methodological and architectural changes, introducing
the aforementioned broker service, discussed below.

IV-A. Inter-Node Communication and RPC
Nodes offering agent processing capabilities connected in

the Internet domain usually not communicating peer-to-peer
like in sensor networks with mesh topologies. Instead routing
is used to establish communication between different appli-
cation processes executed on nodes probably located far
away. One well known inter-process communication
approach is the Remote Procedure Call (RPC), for example,
extensively used in the distributed operating system Amoeba
[21], or on the top of existing operating system, for example,
offered by the distributed Common Object Request Broker
Architecture (CORBA) framework. The capability-based
RPC communication from the Amoeba OS was already suc-
cessfully implemented in VM environments executed on top
of existing operating systems (VAMNET, [5]).
an Bosse - 7 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
Definition 1. RPC-based client-server communication types, operations, and protocol schema

type port = integer array; type capability = {cap_port:port, cap_priv: private};
type private = {prv_obj: integer, prv_rights: integer, prv_rand: port};
type header = {h_port: port, h_priv: private, h_command: integer, h_status: integer};

The RPC communication interface is used in this work for
the inter-platform communication, for example, for transfer-
ring agent program code to another platform or to access
distributed file and naming services. The RPC ontology con-
sists of servers and clients communicating by using a set of
operations. A server performs a GETREQ operation to publish
a listening on a public server port, and a client performs a
transaction TRANS operation to access a server identified by
the public server port. Each server handles a set of objects,
identified by capabilities that are tuples 〈port, obj, rights,
rand〉, consisting of the server port, an object number, a
rights field, and a private protection field authorizing the
rights field. A transaction operation transfers object capabili-
ties to the server that handles the request and finally replies
by using the PUTREP operation. Therefore, a client transac-
tion is synchronous and blocks the client process until the
reply arrives or an error occurred (time-out). The localization
of the server and the routing of the messages is hidden by the
RPC layer, or more precisely by the underlying protocol
layer, shown in Def. 1. The localization is basically per-
formed by broad- or multicasting LOCATE messages to nodes
in the current domain and finally to a limited number of
boundary domains. Each node monitors the locally registered
servers, and replies with a IAMHERE message. Nodes are
identified with ports, too.

The RPC communication is encapsulated in HTTP mes-
sages with XML content and transferred using the generic
HTTP protocol, discussed in section IV-C. The RPC header
and data is stored inside XML tags with compacted hexadec-
imal coded text, on one hand complaining with the XML
standard, on the other hand reducing and optimizing the pay-
load. The binary byte data is coded with two hexadecimal
digits for each data byte.

Each RPC server (process) can act as a client, too, and
vice versa.

IV-B. Domains as Organization Structures and the Directory
Name Service

Domains are groups of agent processing nodes that are
coupled in a network. Agents can migrate between nodes of a
group. A node can be assigned to more than one domain, ena-
bling the migration of agents between domains. Node domain
composition bases on

1. Geometrical localization and proximity, basically
expressing and simulating neighbourhood connectivity

2. Information and data context
3. Tasks to be performed, cooperative goals to be satisfied
4. Logical network domains

Domains can be expressed by paths similar to directory
trees that are handled usually by a file system. In this work a
distributed and unified Directory Name Service (DNS) us
used that provides a database to publish (capability-name)
pairs organized in trees. Each object in the distributed system
is related to a capability, which is serviced by a specific
server. For example, a file containing the agent program code
is serviced by a file server. A directory containing domains is
an object, too, handled by the DNS server. An agent platform
that processes agents programs is another kind of object, han-
dled by a run server that exists on each node. Agents are
objects in this sense, but they don’t belong to a specific
server, therefore they are handled as mobile and autonomous
severs. In Fig. 4, an example for a composition of domains
consisting of network nodes that are not directly connected is
shown.

IV-C. Broker Service
The integration and network connectivity of client-side

application programs like Web browsers as an active agent
processing platform requires client-to-client communication
capabilities, which is offered in this work by a broker server

:header = (:header, :buffer);

{ :header, :buffer} = (:port);
.. ..

(:header, :buffer);

�

�

� �
�

�

an Bosse - 8 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
that is visible in the Internet domain. Though there are
already some approaches for interconnecting browser appli-
cations directly (client-to-client communication using
WebSockets or WebRTC [20] and HTML5 standards), they
are not supported by all browsers and require some external
server for the connection brokerage, too. Furthermore, Web-
Sockets are still under development and there are many
browser incompatibilities. To provide compatibility with and
among all existing browser applications none of these tech-
nologies were used. Instead, a RPC based inter-process
communication with a broker server operating as a router was
invented. Client applications communicate with the broker
by using the generic HTTP client protocol and the GET and
PUT operations. RPC messages are encapsulated in HTTP
requests. If there is a RPC server request passed to the broker,
the broker will cache the request until another client-side host

performs a matching transaction to this server port. The
transaction is passed to the original RPC server host in the
reply of a HTTP GET operation.

But the deployment of one central broker server intro-
duces a single-point-of-failure and is limiting the
communication bandwidth and the scaling capability signifi-
cantly. To overcome these limitations, a hierarchical broker
server network is used. Each broker in this broker graph can
be the root of a sub-graph and can be a service end-point (i.e.,
providing directory and name services), a router between cli-
ents and other broker servers, and an interface bridge to a
non-IP based network, for example, a sensor network. A bro-
ker is just an application program capable of running on any
computer visible globally in the Internet or more locally in
some Intranet domains.

Figure 4. (Left, Centre) Broker Network with HTTP server ports and client applications (browser, node.js client-side) con-
necting to the public visible broker server ports. Client-to-Client communications takes place over the broker servers. (Left,
Bottom) The JavaScript modules and services available on each host (Right) Different nodes can be bound to (overlapping)
domains published in the DNS.

An agent processing node (e.g., a host application) that
cannot publish server ports must connect to one of the broker
servers visible in the network. Usually this should be a server
located nearby. Each node is associated with a host port that
is communicated to the broker server now handling and for-
warding service requests for this specific host, shown on the

lower left side of Fig. 4. Each client-side host collects period-
ically pending and queued service request messages (or
replies of services requests) from the broker server and
passes services replies back to the broker server that forwards
the reply to the appropriate host performing originally a
transaction. If the two hosts involved in a RPC transaction
an Bosse - 9 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
are not handled by the same broker server, the source broker
server must forward request and reply messages to the appro-
priate destination broker server, shown in Fig. 4 by the green
dotted path line. Furthermore, a broker server must handle
local RPC transactions and local RPC servers and, too.

IV-D. The Node Service Platform
In addition to the services provides by the agent process-

ing platform (i.e., the agent manager), each network broker
node and optionally each browser or client-side application
provide a file system service (Atomic File System Service
AFS), the aforementioned Directory and Naming Service
(DNS), and a run server connected to the agent processing
platform (required on each host). The run server provides the
public port for agent execution, migration, and signal mes-
sage propagation between agents.

IV-E. The JavaScript Implementation
There are basically two different execution environments

for the execution of JavaScript (JS) programs: The server-
side standalone node.js interpreter and the client-side JS
interpreter embedded in browser applications. The node.js
interpreter can execute a JS program directly (with source
code compilation on demand), whereas the browser executes
JS embedded in HTML content only. There are node.js mod-
ules enabling the setup of HTTP servers, modules for
accessing files on the local file system, and many more OS
related programming interfaces not available in the client-
side browser JS.

The implementation of the entire network node services,
the RPC communication, and the agent processing platform
with JavaScript is a challenge, but offers significant advan-
tages with respect to portability, compatibility, and the design
unification for server-side and client-side-only platforms
(e.g., browsers). The basic modules implemented on each
host (and browser application) are shown on the left bottom
side of Fig. 4, consisting at least of the RPC module, the
HTML wrapper, and the agent processing platform AFVM.

JavaScript is executed strictly single threaded, though
functions can be executed in parallel and concurrently, there
is no concept of process blocking or any other synchroniza-
tion. In JavaScript programs input-output operations are
mainly performed with asynchronous callback functions. But
all RPC services, the agent processing platform, and servers
operate inherently multi-threaded and synchronously.

To overcome this execution limitation, a Task Scheduler
(TSCH) was invented that simulates parallel multi-process
execution and enables virtual process blocking for the syn-
chronization of processes. Each process consists of a set of
activities (functions) that are enabled by a conditional transi-
tion expression (that can be a constant true value). The
scheduler executes all activity functions sequentially that
have a satisfied transition condition. Blocking of a process
sets a process specific blocking variable (the guard GD) that
is part of the transition condition from the blocking activity to
the next one to be executed after the process was woken up
again. Furthermore, there are block, conditional, and loop

scheduling constructors easing the programming of proc-
esses. All RPC operations are prepared for the scheduler
management. Though callback functions are still used, a sin-
gle program flow of processes can be constructed on
programming level.

The client-side Browser JS implementation is created by
compacting and relocating server-side dependencies (using
browserify and uglifyjs for minimizing), and requires less
than 250kB text size.

V.USE-CASE: CLOUD BASED ADAPTIVE MANUFACTUR-
ING AND ROBOTS AS PRODUCTS

This section outlines a big application use-case for the
introduced agent processing platform with an architecture for
additive and adaptive manufacturing based on a closed-loop
sensor processing approach with data mining concepts com-
bined with Internet-of-thing architectures. Additive and
adaptive cloud-based design and manufacturing are attractive
in the field of robotics, not only limited to industrial produc-
tion robotics, mainly targeting service robots and semi-
autonomous carrier robots. In cloud-based manufacturing,
the consumer of the products is integrated in the cloud-based
manufacturing process [6], directly involved in the manufac-
turing process using distributed cloud computing and
distributed storage solutions.

Robots can be considered as active, mobile, and autono-
mous data processing units that are commonly already
connected to computer networks and infrastructures. Robots
use inherent sensing capabilities for their control and task sat-
isfaction, commonly using integrated sensing networks with
sensor pre-processing, deriving some inner state of the robot,
for example, mechanical loads applied to structures of the
robot or operational parameters like motor power and tem-
perature. The availability of the inner perception information
of robots enable the estimation of working and health condi-
tions initially not fully considered at design time. The next
layer in cloud-based adaptive manufacturing process can be
the inclusion of the products themselves delivering opera-
tional feedback to the current design and manufacturing
process, leading to a closed-loop evolving design and manu-
facturing process with an evolutionary touch, shown in Fig.
5. This evolutionary process adapts the product design, for
example the mechanical construction, for future product
manufacturing processes based on a back propagation of the
perception information (i.e., recorded load histories, working
and health conditions of the product) collected by living sys-
tems at run-time. The currently deployed and running series
of the product enhances future series, but not in the tradi-
tional coarse-grained discrete series iteration. This process
can be considered as a continuously evolving improvement
of the robot by refining and adapting design parameters and
constraints that are immediately migrated to the manufactur-
ing process. A robot consists of a broad range of parts, most
of them are critical for system failures. The most prominent
failures are related to mechanical and electro-mechanical
components, which are caused by overload conditions at run-
an Bosse - 10 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
time under real conditions not to be considered or unknown
at initial design time.

The integration of robots as product and their condition
monitoring in a closed-loop design and manufacturing proc-
ess is a challenge and introduces distributed computing and
data distribution in strong heterogeneous processing and net-
work environments. One major question to be answered is
the sensing of meaningful condensed product condition infor-
mation and the delivery to the designer and factory. The
proposed mobile agent model offers a self-contained and
autonomous virtual processing unit that is well suited for
such large-scale applications. The mobile agents represent
mobile computational processes that can migrate in the Inter-
net domain and as well in sensor networks.

Agents are already deployed successfully for scheduling
tasks in production and manufacturing processes [7], and
newer trends poses the suitability of distributed agent-based
systems for the control of manufacturing processes [8], fac-
ing not only manufacturing, but maintenance, evolvable
assembly systems, quality control, and energy management
aspects, finally introducing the paradigm of industrial agents
meeting the requirements of modern industrial applications.
The MAS paradigm offers a unified data processing and
communication model suitable to be employed in the design,
the manufacturing, logistics, and the products themselves.

The scalability of complex industrial applications using
such large-scale cloud-based and wide area distributed net-
works deals with systems deploying thousands up to million
agents. But the majority of current laboratory prototypes of
MAS deal with less than 1000 agents [8]. Currently, many
traditional processing platforms cannot yet handle big num-
bers with the robustness and efficiency required by industry
[9][10]. In the past decade the capabilities and the scalability
of agent-based systems have increased substantially, espe-
cially addressing efficient processing of mobile agents.

There programmable agent processing platform intro-
duced in this work can be deployed in strong heterogeneous
network environments, ranging form single microchip up to
WEB JavaScript implementations, all being fully compatible
on operational and interface level, and hence agents can
migrate between these different platforms. Multi-agent sys-
tems can be successfully deployed in sensing applications,
for example, structural load and health monitoring, with a
partition in off- and online computations [2]. Distributed data
mining and Map-Reduce algorithms are well suited for self-
organizing MAS. Cloud-based computing, as a base for
cloud-based manufacturing, means the virtualization of
resources, i.e., storage, processing platforms, sensing data or
generic information.

Traditional closed-loop processes request data from
sources (products, robots) by using continuos request-reply
message streams. This approach leads to a significant large
amount of data and communication activity in large-scale
networks. Event-based sensor data and information distribu-
tion from the sources of sensing events, triggered by the data
sources (the robots) themselves, can improve and reduce the

allocation of computational, storage, and communication
resources significantly.

A cloud in terms of data processing and computation is
characterized by and composed of:

• A parallel and distributed system architecture
• A collection of interconnected virtualized computing enti-

ties that are dynamically provisioned
• A unified computing environment and unified computing

resources based on a service-level architecture
• A dynamic reconfiguration capability of the virtualized

resources (computing, storage, connectivity and net-
works)

Cloud-based design and manufacturing is composed of
knowledge management, collaborative design, and distrib-
uted manufacturing. Adaptive design and manufacturing
enhanced with perception delivered by the products incorpo-
rates finally the products in the cloud-based design and
manufacturing process.
Agent Classes. Different agent classes are defined that sat-
isfy different sub-goals: event-based sensor acquisition
including sensor fusion (Sensing), aggregation and distribu-
tion of data, pre-processing of data and information mapping,
search of information sources and sinks, information delivery
to databases, delivery of sensing, design, and manufacturing
information, propagation of new design data to and notifica-
tion of manufacturing processes, notification of designer, end
users, update of models and design parameters. Most of the
agents can be transferred in messages with a size lower than
4kB.

VI.CONCLUSION AND OUTLOOK

In this work, a novel Agent Processing Platform archi-
tecture for code-based mobile agents in large scale
heterogeneous sensor networks including low-resource
microchip nodes was introduced. The standalone agent
processing platform, a multi-core stack processor, can be
implemented entirely on microchip level, and requires no
operating system and no boot code. Alternatively, the
processing platform can be implemented efficiently in soft-
ware with code and operational compatibility, enabling the
deployment in heterogeneous network environments, inter-
connecting hardware and software platforms executed on
generic microprocessors. The JavaScript implementation of
the processing platform together with a minimal distributed
operating system layer consisting of RPC, run, file, and nam-
ing services enables the integration of body area, ambient,
and sensor networks in the Internet domain, a prerequisite for
the future of Internet-of-Things and Sensor Clouds in daily
use computing environments.

Agents can migrate between different hardware and soft-
ware platforms (they are compatible on the execution level)
by migrating the program code of the agent, embedding the
state and the data of an agent, too.
an Bosse - 11 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
Figure 5. Additive and adaptive Manufacturing with back propagation of sensing data using mobile agents from robots to
the design and iteration process resulting in continuos series improvements.

A broker service enables the integration of hosts (generic
computers, mobile devices, ...) that are not visible in the
Inter- or Intranet domains and that cannot publish server
communication ports.

Using this broker service, which is composed of a graph-
based network of single broker server applications, each
computing device capable of executing JavaScript code can
act as an agent processing platform.

This agent processing platform is capable of receiving
mobile agents form other platforms and hosts. The broker
service creates virtual connectivity based on domains.

REFERENCES

1. S. Bosse, Design and Simulation of Material-integrated Distributed
Sensor Processing with a Code-based Agent Platform and mobile
Multi-Agent Systems, MDPI Sensors, 2015 (2), pp. 4513-4549,
2015, DOI:10.3390/s150204513

2. S. Bosse, A. Lechleiter, Structural Health and Load Monitoring
with Material-embedded Sensor Networks and Self-organizing Mul-
ti-agent Systems, Procedia Technology, Proceeding of the 2nd
SysInt Conference, Bremen, Germany, 2014, DOI: 10.1016/j.prot-
cy.2014.09.039

3. S. Bosse, Distributed Agent-based Computing in Material-Embed-
ded Sensor Network Systems with the Agent-on-Chip Architecture,
IEEE Sensors Journal, DOI 10.1109/JSEN.2014.2301938

4. S. Bosse, Design of Material-integrated Distributed Data Process-
ing Platforms with Mobile Multi-Agent Systems in Heterogeneous
Networks, ICAART 2014, DOI:10.5220/00048175006-90080

5. S. Bosse, VAMNET: the Functional Approach to Distributed Pro-
gramming, SIGOPS Oper. Syst. Rev., 40, pp. 108-114, 2006,

DOI:10.1145/1151374.1151376.
6. D. Wu, J. L. Thames, D. W. Rosen, and Dirk Schaefer, TOWARDS

A CLOUD-BASED DESIGN AND MANUFACTURING PARA-
DIGM: LOOKING BACKWARD, LOOKING FORWARD, in Pro-
ceedings of the ASME 2012 International Design Engineering
Technical Conference & Computers and Information in Engineering
Conference, IDETC/CIE 2012 August 12-15, 2012, Chicago, Illi-
nois, USA, 2012

7. M. Caridi and A. Sianesi, Multi-agent systems in production plan-
ning and control: An application to the scheduling of mixed-model
assembly lines, Int. J. Production Economics, vol. 68, pp. 29–42,
2000.

8. P. Leitão and S. Karnouskos (ed.), in Industrial Agents Emerging
Applications of Software Agents in Industry. Elsevier, 2015.

9. Marík, V., McFarlane, D.C., 2005. Industrial adoption of agent-
based technologies. IEEE Intell. Syst. 20 (1), 27–35.

10. Pechoucek, M., Marík, V., 2008. Industrial deployment of multi-
agent technologies: review and selected case studies. Auton. Agent.
Multi-Agent Syst. 17 (3), 397–431.

11. M. Guijarro, R. Fuentes-fernández, G. Pajares, A Multi-Agent Sys-
tem Architecture for Sensor Networks, Multi-Agent Systems - Mod-
eling, Control, Prog., Simulations and Applications, 2008.

12. A. Rogers, D. D. Corkill, N. R. Jennings, Agent Technologies for
Sensor Networks, IEEE Intelligent Systems, vol. 24, no. 2, 2009.

13. X. Zhao, S. Yuan, Z. Yu, W. Ye, J. Cao, Designing strategy for
multi-agent system based large structural health monitoring, Expert
Systems with Applications, 2008, 34(2), 1154–1168. doi:10.1016/
j.eswa.2006.12.022

14. J. Liu, Autonomous Agents and Multi-Agent Systems, World Scien-
tific Publishing, 2001 (ISBN 981-02-4282-4)

15. R. Milner, The space and motion of communicating agents. Cam-
bridge University Press, 2009.

16. R. Milner, Communicating and mobile systems: the π-calculus,

��������

����

������

������

������� �
�� ����	
�

���� �
�� ����	
�

���	��
����

�����

����	
 ����	
�

����	���

�
���
���	���

������� �
�� ����	
�

�

�

��
�

�

�

�

�	���� �����

�

�

�

an Bosse - 12 - 2015

DOI: 10.15439/2015F252
Annals of Computer Science and Information Systems (6)

Position Papers of the 2015 FEDCSIS Conf.

Stef
Cambridge University Press, Cambridge (1999)
17. L. Cardelli, A: Gordon, Mobile Ambients. Theoretical Computer

Science, Special Issue on Coordination 240(1), 177–213 (2000)
18. L. Chunlina, L. Zhengdinga, L. Layuanb, and Z. Shuzhia, A mobile

agent platform based on tuple space coordination, Advances in En-
gineering Software, vol. 33, no. 4, pp. 215–225, 2002

19. Z. Qin, J. Xing, and J. Zhang, A Replication-Based Distribution Ap-
proach for Tuple Space-Based Collaboration of Heterogeneous
Agents, Research Journal of Information Technology, vol. 2, no. 4.
pp. 201–214, 2010

20. S. Loreto, S. Pietro Romano, Real-time communications in the web:
Issues, achievements, and ongoing standardization efforts, IEEE
INTERNET COMPUTING, vol. 16, no. 5, pp. 68–73, 2012.

21. S. J. Mullender and G. van Rossum, Amoeba: A Distributed Operat-
ing System for the 1990s, IEEE Computer, vol. 23, no. 5, pp. 44–53,
1990.
an Bosse - 13 - 2015

	I. Introduction
	II. The State-based Reactive Agent Behaviour Model and AAPL Programming Language
	II-A. Activity-Transition Graphs
	II-B. The Activity-based Agent Programming Language (AAPL)
	II-C. Multi-Agent Interaction
	III. The Agent Code Processing Platform
	III-A. Platform Architecture
	IV. The WEB Platform
	IV-A. Inter-Node Communication and RPC
	IV-B. Domains as Organization Structures and the Directory Name Service
	IV-C. Broker Service
	IV-D. The Node Service Platform
	IV-E. The JavaScript Implementation
	V. Use-Case: Cloud Based Adaptive Manufacturing and Robots as Products
	VI. Conclusion and Outlook

