AFL Agent
Forth

Copyright © 2015 Stefan Bosse



Table of Contents

(oo 0T 1o o P 2

PrOgramIMiNg .eceeeeeeeeeeeeeeeeeeeeemeeeeeereemreerererererrrrerererrrrerrerrrrrrerrrrrrrr. 3

N I O 1Y o T P 4

5] 7= 10 P 4

Program StrUCIUIE....ccceeeeeee et s s e s e e e 5

Code LOOKUP TADIE ..oeveeieeeeieeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseseesessessseeeeseeeennee 6

Virtual Machine INStruCtion Set........ccciiiiieiiinn s 7

Mathematical Operations and Values...........cccceeeieiee e 7
(0] a1 o] @] oT=] = 11Te] o = J PP PPPPPPPPPPPINE 10
(0o o L= =V 1= 14
Stack and Data OPeratioNS......eueeeeeeeeeereerrrrrrermerererererrrrrerrererrerrrm. 18
MODIlity OPEIatiONS .ccceeeeeeeeeeeeeee e 22
Process Control OPerationS.........oevvveieei e 22
CommuNICatioN OPEratiONS....uuveeeeeeerrrrrerrrrrrrerrerererrrererrrrerererrrererrreemreeeeree 26
EXAMPIES e 29



Introduction




Programming

Content

AFL Overview



Programming

AFL Overview

Name

AFL Programming Language - Agent Forth (a FORTH) Overview
Synopsis

par p TYP
var x TYI
AL L.
A2 L.
i B
:$S ..
. %rRANS

| Al ¢ ?A2 ¢ ?A3 ..
| A2 ..

Description

Long description.

Stacks

Dat a St ack
(viv2v3 --r11r2r3)

Return Stack
R( vl v2 v3 -- r1r2r3)

The top of the stack is the right underlined element of the group (i.e., r3). It is
assumed that the data width of the data and return stack is equal (n bit) and
that the data width is equal to the instruction code size to enable code

morphing support by using the data stack. Common data- and instruction
code widths are 16 and 24 bits.



Code Frame

The code frame is a self-contained unit which holds all code and persistent
data. A code frame consists of a boot section, which mainly reflects the control
state of the program and which can be modified by using code morphing
operations. The code frame provides self initialisation by executing
instructions in the boot section, by executing instructions in the code frame
body, and by definition instructions (word, variable, transition) within the code
frame. A code frame will always start execution at the top of the frame by
executing the boot section. A newly created or migrated code frame will pass
through the entire code frame until the transition section is reached. The
transition section has a boot header, too, which can be modified, and
branches to the next activity row to be executed.

1. Boot Section

Bl B2 B3 B4 B5 B6 B7 B8 .. B16

2. Lookup and Rel ocation Table LUT [N]
FLAG OFF FRAME SEC

FLAG OFF FRAME SEC ...

3. Variable Definition

VAR Vi TYP [N]
4. Initialization Instructions

Cl C2C3 ..

5. Activity Word Definition
:*Al REF REF .. ;

6. Function Definition

S =

7. Signal Handl er Definition
] I

8. Transition Table Definition Sections
;%I Bl B2 B3 B4

|A {1 .. ?AI+1} {2 ..} ..

|A+1 {1 .. ?AI+2} {2 ..}

Code frame format

Program Structure

AFL AML Description



par pl int VAR VAL( LUT#) Definition of agent
par p2 int VAL(size) DATA parameters and variables
var x int ..
var y int VAR VAL( LUT#)
VAL(si ze) DATA
:*act DEF Definition of an activity
VAL (LUT#) word
; VAL (size)
EXI T
:func DEF Definition of a generic
VAL (LUT#) function word
; VAL (size)
EXI T
: $handl er DEF Definition of a signal
VAL (LUT#) handler word
; VAL (size)
EXI T
% rans TRANS Definition of a transition
|actl .. ?act2 .. |VAL (LUT#) table word and default
. VAL (size) transition table call.
|act2 .. ?act3 .. |NOP NOP NOP NOP
TCALL 11
trans

AFL Program Structure

Code Lookup Table

The program code embeds a lookup table (LUT) with relocates code
addresses of variables, activity, and function words. The LUT consists of rows,
each consisting of four columns: { FLAG, OFF, FRAME, SEC }.

The FLAG column specifies the kind of the LUT row entry { FREE, VAR, ACT,
FUN , FUNG, TRANS}. The OFF and FRAME columns specify code
addresses, whereas the SEC column entry is used for auxiliary values, mainly
for caching of transition section branches related with activity words. The SEC
column can be packed with the FLAG field optimising resource requirements.
The first row of the LUT always contains the relocation data for the current

6



transition table word used to load the TP register which points to the start of
the boot section of the transition table.

Virtual Machine Instruction Set

Only a sub-set AML of all available AFL operators are implemented on VM
instruction set level. They are added with a AML column in the following
instruction set tables.

The instruction code format is divided into a short and a long code format.
The short code enables code packaging in one instruction word to speed up
code processing. The short code format is 8 bit wide, the long code format is
equal to the full code and data word width (e.g., 16 or 24 bits). The first two
highest bits determine the code format. The long code format is used by
instructions with arguments, like for example, branch or value literal words,
indicated in the pseudo notation by enclosing the argument in parentheses,
i.e., BRANCH(-100).

KIND SELECTOR OPCODE ARGUMENT VALUE

Value 1X - - (N-1) data
bits

Short Command |01 6 bits - -

Long Command |00 011011 (N-4) data bits -

A

Long Command |00 00XXX (N-7) data bits -

B

Instruction code format (N: instruction word and data width, LSB format)

Mathematical Operations and Values

The set of mathematical operators consists of arithmetic, relational, and
logical operations. The operands are retrieved from the data stack and the
result is stored on the data stack again.

AFL Value AML Stack Description

n VAL( n) (--v) Pushes a signed
OxXXX O0bBBB |$80+n constant value to the
00000 data stack. The value v

can be in the range
{-2n-2..2n-2-1} with n bit
data width of the code
instruction.




N VAL(n1) (--v) Pushes an unsigned
OxXXX 0bBBB |$80+nl constant value to the
00000 EXT(si gn) data stack followed by a
$06+si gn MSB sign extension
(sign=+-1) word for large
values. The value v can
be in the range
{-2n-1..-2n-2-1} or
{2n-2..2n-1-1} with n bit
data width.
0/1 ZERO/ ONE (--v) Pushes value zero or
$40/ $41 one to the data stack.
| ong EXT( LONG) (--) Long operation prefix:
$06+$10 values can be combined
to double word-size
values, and artihm., log.,
and rel. operations can
be extended to use the
long word values.
Value literals
AFL Operator AML Stack Description
+ ADD ( vl v2 -- Addition (signed) r =
$42 r) vi+\2
- SUB (vl v2 -- Subtraction (signed) r =
$43 r) V12
* MUL ( vl v2 -- Multiplication (signed) r
$44 r) = vi*2
/ DI V (vl v2 -- Division (signed) r =
$45 r) VN2
nmod MOD (vl v2 -- Division (signed)
$46 r) returning remainder r =
V1 % V2
negat e NEG (v--1) Negate operand r=-v
$47
abs - (v--1) Return positive
equivalent r= if v1<0
then -v1 else vi
nn - (vl v2 -- Return smallest number
r) r=if vi<v2 then V1 else
2




max - ( vl v2 -- Return biggest number
r) r=if vi>\2 then V1 else
2
random RANDOM ( mn max Return a random
$69 -- ) number in the range
intenval [min,max]
Arithmetic Operations
AFL Operator AML Stack Description
< LT (vl v2 -- Lower than (signed) r =
$4A ) (VI<\2)
> GT (vl v2 -- Greater than (signed) r
$4B ) = (\ﬁL>\/Z)
= EQ (vl v2 -- Equal (signed) r =
$4C ) (V1=v2)
<> - ( vl v2 -- Not equal (signed) r =
) (V1<>\2)
<= LE (vl v2 -- Lower than or equal r =
$4D ) (Vi<=\2)
>= GE ( vl v2 -- Greater than or equal r
$4E ) = (VI>=\2)
0= - (v--1) Test for zero
0<> - (v--1) Test for non zero
Wi t hin - ( vl v2 v3 Test if V2 is within
-- 1) (V1,3
Relational Operations
AFL Operator AML Stack Description
and AND (vl v2 -- r=viaw
$50 )
or OR ( vl v2 -- r=viv w2
$51 )
xor - (vl v2 -- r=vi® w2
)
not NOT (v--1) r=-v
$52
i nvert I NV (v--1) r = Vhits bj(v): —b;
$53
| shift LSL $56 (vn--r r = shift vleft by n bits
rshift LSR $57 (vn--r r = shift vright by n bits




Logic bitwise Operations

The following AFL data types and value formats are supported:

type DT = {
bool, char, int(eger), float, int32, word, string

}

Deci mal Format, integer: 0,1, 2..

Bi nary Format, integer: Ob101

Hexadeci mal Format, integer: Ox13F

Hexadec. Format Constructor: Ox{El, E2,3,...} => 0x123..
const E1 1 ...
enum XYZ EO E1 E2 ..

Cctal Format, integer: 00175

Cctal Format Constructor: Oo{El, E2,3,...} => 00123..
const E2 2 ...
enum XYZ EO E1 E2 ..

Fl oati ng Point Fornat, fl oat: 1.234

Exponential Format, float: 1. 2E-10

Char Formmt, char: ‘¢

String Format, string: "abcd"

Bool ean Format, bool: true, false

The format constructors are used to create packed values composed of
symbolic constants or numbers.

Enumeration Types

An enumeration type definition can be used to define a set of numbered
symbolic constants. An optional start index value for the first symbol can be
given ([start]). The symbolic constant are replaced in expressions by their
respective number value.

enum ENUMIYPE SYML SYM? ..
enum STARTI NDEX ENUMIYPE SYML SYM2 ..

Enumerations are used to map symbolic names on integer constant values.
The first symbol element of an enumeration is either assigned to an index
value zero or the value of an optional start index STARTINDEX. For each
following symbol the index value is incremented by one.

Control Flow

10



Control

structures are used

to control

down-directed branching or by using up-directed loops.

the program flow either by

AFL Control
Structure

AML

Stack

Description

i f
true words
t hen

( flag -- )

If the flag value on
top of the stack is
non-zero (true), the
words between i f
andt hen are
executed.

i f

true words
el se

fal se words
t hen

( flag -- )

If the flag value on
top of the stack is
non-zero (true), the
words between i f
and el se are
executed, otherwise
the words between
el se andt hen.

case key
vl of
v2 of

endof
endof

default words
endcase

Value-based
case-select
statement. The value
of the key is
compared with a list
of possible values
{v1, V2, ..}. If a value
matches the key, the
words between of
and endof are
executed.

exit

EXIT
$60

The exit word
causes a return from
the current definition
call. The code
branch point and
code frame are taken
from the return
stack. An exit call
with an empty return
stack Kkills the
process.

NOP
$61

11

No operation
instruction




BRANCH( A)
$10+A

Branch code
execution relative to
current code position
IP in the same code
frame

BRANCHZ( A)
$20+A

( f

lag --

)

Branch code
execution relative to
current code position
IP in the same code
frame iff the flag on
the data stack is
zero (false).

CALL(#)
$SOE+#

R(
cf

- - |p
)

Call a word and push
the current code
position IP+1 on the
return stack and the
current code frame,
which is required by
exit. The word code
address and the
code frame are taken
from the LUT[#]. A
call of a transition
word sets the current
active transition table
and copies LUT entry
to LUT row 0! No call
frame is pushed!

BRANCHL
$5C

12

(i

p cf --

Performs a long
branch to a different
code frame. Negative
code frame numbers
are relative to the
root frame (cf=-1:
root frame).




{*n .. } BBRANCH( A) (--) Dynamic blocks: a
( enabled ) |($00+A conditional branch
{n .. } which can be
( disabled) activated (A>0,
block disabled) or
deactivated (A<O,
block enabled). If
disabled, the block
spawned by A is
skipped. E=0 and
A=0is equal to the
DATA word behaviour
(NOP data marker
and place holder)!
Branch control structures
AFL Control AML Stack Description
Structure
do .. loop - ( Iimt indexO The words between do
do .. -- ) and loop are repeated
| oop+ ( limt indexO as long as index <
--) limit. Loop increments
( increnent ) a copy of the index
counter on the top of
R( -- i) the return stack.
begin .. again|- (--) This unconditional loop
finishes only if an
exception is thrown.
begin .. - (--) This loop is executed
until ( flag -- ) at least one time, and
repeats execution as
long as the flag
condition is false.
begin .. - (--) The loop starts at
while .. ( flag -- ) begi n and all the
repeat words up towhi | e

13

are executed. If the
flag consumed by
while is true, the
words between while
and repeat are
executed, finally
looping again to begin.




i j k - ( -- index ) Pushes the current
loop index value on the
data stack. The
innermost first-level
loop is referenced with
i, and outer higher

level loops with j and k.

Loop control structures

Code and Call Frames
It must be distinguished:

Code Frame Offset CFO
This is the absolute code address offset of a program code frame in the
current code segment CS. The code segment CS is partitioned into fixed
size code frames.

Code Frame Number CFN
This is the index number of the code frame. CFN=CFO/CF_SIZE.

Negative Code Frame Number CFN
Negative code frame numbers are relative to the root code frame of the
current process. The root frame has number -1, the next linked frame has
number -2, and so on. Code frames are linked if the last word of a code
frame is a NEXT(CFN) instruction!

Each time a word is called, a call frame is stored on the return stack. This call
frame consists of a tuple (ip,cf), which points to the return address of the next
word to be executed after the call. There are two different word calls:
transition calls using TCALL and generic function word calls using the CALL
instruction.

In the case of activity word calls from within the transition table section using
TCALL the current original (absolute) code frame offset taken form the CF
register must be converted to a relative code frame number. On return, the
call frame must be converted again to an absolute code offset to load the CF
register again. This relative code frame numbering is required for code and
process migration support. After migration absolute code frame offsets and
numbers will change and may never be part of the data state of the process
before migration, that means, stored on the stacks! Relative code frames
other than the root frame are expensive to process because the code frame
list must be iterated each time.

Code Frame Control and Modification

14



AFL

AML

Stack

Description

c>

FROMC W W2

$72

(n--c¢)

Push the n following
code words on the
data stack

vV>C

VTOC
$5D

(v noff
CS[ cfs+of f]:
CS[cfs+of f +1]: EXT ..

of f'
cv ..

)

Conwert n values
from the data stack
in a literal code
word and extension
if required. The new
code offset after the
last inserted word is
returned.

>C

TOC
$73

(cl

c2 ..

n

CS[ cfs+of f]:
cn

of f -
cl c2

)

Pop n code words
from the data stack
and store them in
the morphing code
frame starting at
offset off.

S>C

STOC
$54

of f'

)

Conwert all data and
return stack values
to code values in
the morphing code
frame starting at
offset off. Returns
the new offset after
the code sequence.

r>c

REF RTOC
$55

( off ref

15

of f'

)

Transfer the
referenced object
(words, transitions,
variables) from the
current process to
the morphing code
frame starting at
offset off. Returns
the new offset after
the code sequence.




new

NEWCF
$78

( ini
cf# )

t --

offinit=1

Allocates a new
code frame (from
this VM) and
returns the code
frame number (not
CS offset!). If init =
1, then a default
(empty) boot and
LUT section is
created, with sizes
based on the
current process.
The returned offset
value points to the
next free code
address in the
morphing code
frame.

| oad

LOAD
$71

( cf# ac# -- )

Load the code
template of agent
class AC in the
specified code
frame number or
copy the current
code frame (ac=-1).
If the template
spawns more than
one frame,
additional frames
are allocated and
linked.

Icf

SETCF
$79

( cf# -- )

Switches code
morphing engine to
new code frame
(number). The root
frame of the current
process can be
selected with cf#=-1.

@f

GETCF
$5E

(__

cf# )

Get current code
frame number (in
CS from this VM).

Code morphing operations

AFL

|Stack

16

Description




Il ut (A) SETLUT( A) ( -- Set LUT offset (LP).
$30+A
lut [N] LUT N*3 DATA ( -- Define a LUT with N
$7A rows.
DATA
$00
tenmplate AC - ( -- Defines a code frame
as a template which
is stored in the
global CCS and
dictionary.
- END ( -- Marks the end of a
$6E code frame.
- NEXT #CF ( -- Chains this code
$6F frame with a next
one.
Code frame control operations
AFL AML Stack Description
: NAMVE DEF # S ( -- Defines a new word.
$74 A (local) word
REFN( n) definition instruction
is followed by the
LUT row index and
the size of the word
body. The head of
the word body can
contain references.
: NAMVE DEFN ( -- Defines a new word
" NAMVE" which can be stored
S in the word dictionary
$75 using the export
instruction.
T UNAMVE TRANS ( -- Defines the transition
$76 table.
si g NAME DEF # S (-- Defines a signal
: SNAVE handler word. The

17

word name must be
equal to an already
defined signal.




18

i mport NAME | MPORT # " NAME" (--) Import a global word.
try inport $77 If the global word
NAME wi t h does not exists than
name the agent terminates.
To awoid this
behaviour, use the try
with statement
instead, which uses
a local word instead.
export NAME EXT( EXPORT) ( --) Exports a word to the
$06+%$20 global dictionary (and
CCS), which was
defined with the
::NAME environment.
Code definition and import operations
Stack and Memory Control
AFL AML Stack Description
dup DUP (v--v Duplicate the top stack
$68 v ) item
?dup - (v -- Duplicate the top stack
O:v v) item only if it is not zero
drop DROP (v--) Discard the top stack
$6A item
swap SWAP (vl v2 Exchange the top two
$6B -- v2 vl ) |stack items
over OVER (vl v2 Make a copy of the
$6C -- vl v2 |second item on the
vl ) stack
ni p - ( vl v2 Discard the second
-- v2) stack item
tuck - (vl v2 Insert a copy of the top
-- v2 vl |stack item underneath
v2 ) the currents second
item
r ot ROT ( vl v2 Rotate the positions of
$6D v3 -- v2 |the top three stack
v3 vl ) items




-rot - ( vl v2 Rotate the positions of
v3 -- v3 |the top three stack
vl v2 ) items
pi ck(n) FETCH(DS, - n) ( vn Get a copy of the n-th
$02+(-n) vl -- data stack item and
pi ck /'l PICK $67 .. vl vn |place it on the top of
) the stack.
( vn (pi ck(1) :dup,
vin -- pi ck(0) : n popped
)- - vl vn |fom stack)
set (n) STORE( DS, - n) ( vn Modify n-th data stack
$04+(-n) viv -- item. (set (0): n
set I/ SET $66 vn* popped from stack!)
vl )
( vn
vivon--
vn*
vl )
rpi ck RPI CK R( vn Get a copy of the n-th
$62 vl -- return stack item and
vl) place it on the top of
( n -- vn |[the data stack.
)
rset RSET R( vn Modify n-th return stack
$63 vl -- item.
vn*
vl )
(vn--)
2dup - (vl v2 Duplicate the top
-- vl v2 |cell-pair of the stack
vl v2)
2dr op - (vl v2 Discard the top-cell pair
--) of the stack
2swap - (vl v2 Swap the top two
v3 v4 -- cell-pairs on the stack
v3 v4 vl
v2 )
2over - (vl v2 Copy cell pair v1 \2 to
v3 v4 -- the top of the stack
vl v2 v3
v4d vl v2 )
cl ear CLEAR ( .. -- ) |Cleardata and return
$5B R( .. -- ) |stack.

19




Data Stack (SS) Operations

AFL AML Stack Description
>R TOR (v--) Push the top data stack
$64 R( -- v) item to the return stack
R@ Rl v -- V) Copy the top return
(--v) stack item to the data
stack
R> FROVR Rl v --) Pop the top return stack
$65 (--v) item to the data stack
2>R ( vl v2 -- ) |Push the top data stack
R( -- v1 v2 ) |cell pair to the return
stack
2R@ R( vl v2 -- Copy the top return
vl v2 ) stack cell pair to the
( -- vl v2 ) |datastack
2R> R( vl v2 -- ) |Pop the top return stack
( -- vl v2 ) |cell pair to the data
stack
Return Stack (RS) Operations
AFL AML Stack Description
! STORE/ SET (ref v Store the value v at
$66 --) memory cell
I x STORE( LUT(x)) address cf + off
$04+# (v--) retrieved by a
lookup in the
LUTTref].
@ FETCH PI CK ( ref -- Fetch and return
$67 v ) the value from
@ FETCH( LUT(x)) memory cell
$02+# (--v) address cf + off
retrieved by a
lookup in the
LUTTref].

20




var x typ [
[size] ];

Define and declare
a new variable x
with a data type
typ. Arrays are
defined by adding a
size operators
[size]. Each
variable is assigned
an AC unique LUT
relocation index n.

const Cinit

Define a symbolic
constant value (def
C = init)

VAR # S DATA ..
$70

DATA

$00

On VM lewvel a
variable is specified
by their LUT index
# and the size S of
the reserved code
area in words
following the VAR
definition.

REF( #)
$08+#

VAL ( LUT(x))

of f

Inside word bodies
or on top-level the
REF operator
pushes the code
offset and code
frame of referenced
object relocated by
the LUT on the
data stack.

Data Memory (DS) and Register Operations

Type

Size

Description

integer

word width

Signed Integer

int32

32/(word width) words

Long signed integer

char

Scalar: word width

Array: packed 8 bit and
(word width / 8) character
/ word or unpacked (eq.
word width)

21

Character or signed byte




byte Scalar: word width Unsigned Byte
Array: packed 8 bit and
(word width / 8) bytes /
word or unpacked (eq.

word width)
word Word width Unsigned Word
float 2-4 words Floating Point Number
bool word width Boolean
Data types
Mobility

Migration of agents require the update of the boot sections of the code frame
and the transfer of the code frame to a neighbour node. Migration to a
different VM requires the copying of the code frame.

AFL AML Stack Description
nove MOVE ( dx dy -- ) Migrate agent code to
$7F neighbour node in the

given direction. The
current data and return
stack content is
transferred and
morphed to the boot
code section. The
transition boot section
is loaded with a branch
to the current IP+1.

?li nk LI NK ( dx dy -- Check the link

$48 flag ) connection status for
the given direction. If
flag=0 then there is no
connection, if flag=1
then the connection is

alive.
Migration operations
Process Control
AFL AML |Stack Description

22



| Al

TCALL(#)
$SOA+#

Call next activity word
A,. The word address
and the code frame are
taken from the LUT.

?Ai

TBRANCH( #)
$OC+#
NOT BRANCHz( ®

Branch to next
transition row for
activity A, if the flag is
true. The relative
branch displacement
for the appropriate
TCALL (#) target is first
searched by using the
LUT entry for the
respective activity. If
this fails, the entire
transition section is
searched (and the
result is cached in the
LUT).

Optimization:
replacement with
conditional branch,
requiring immutable
transition section.

END
$6E

23

End marker, which
marks the end of a
transition table row.




t+ Al #b
t- Al #b
t* Al #b
It trans

BLMOD
$59
TRSET
$5A

( ref# b#
flag sel

)

( ref# --

)

Maodifies transition
table which can be
selected by the 't
statement. Each
transition bound to an
outgoing activity is
grouped in a block
environment.
Transition are modified
by enabling or
disabling the blocks in
a transition row using
the BLMOD operation.
The transition modifiers
reference the block
number b# in the
respective transition
row. If b# = 0 all
dynamic blocks (in the
t-row) will be disabled.

?bl ock

QBLOCK
$7B

24

( flag --

)

Suspend code
processing if the flag is
not zero. If a schedule
occurs, the current
data and return stack
content is transferred
and morphed to the
boot code section with
a branch to the current
IP-1.




run

RUN
$5F

( argl ..

#args cf#

flag --
id)

Start a new process
with code frame (from
this VM), returns the
identifier of the newly
created process. The
arguments for the new
process are stored in
the boot section in the
code frame of the new
process.

If flag = 1 then a forked
process is started. The
boot section of the new
code frame and the
boot section of the
transition table is
modified.

fork

( argl ..
argn #args
-- pid)

Fork a child process.
The child process
leaves immediately the
current activity word
after forking, the parent
process continue.

create

( argl ..
argn #args
#ac -- pid)

Create a new agent
process.

kill

ai d=-1:
EXIT

CLEAR

25

(aid--)

Terminate and destroy
agent. For self
destruction the aid

must be equal -1.




suspend

SUSP
$4F

Suspend the
execution. The current
CF and IP+1 is saved
in the current transition
table boot section. The
process state will be
changed to
PROC_SUSP. Ifflag =
1 then the code frame
is fully reinitialized
after resume and the
stacks must be
already dumped to the
boot section. If flag =
-1 then the boot
section is initialized
and the stacks are
dumped, after resume
the next instruction is
executed directly w/o
full code frame setup.

Transition table and

Signals

scheduling operations

AFL

AML

Description

si gnal

S

Defines a signal S.

1 $S ..

DEF

Defines a handler for
signal S. If called, the
signal argument is on
the top of the data
stack. The signal
argument is pushed on
the data stack.

raise

RAI SE
$49

( arg s pid

Send a signal s to the
process pid.

timer

TI MER
$58

Install a timer (tmo>0)
raising signal sig if
time-out has passed. If
tmo=0 then remowe

timer.

Signals

26




Tuple Database Access

Tuple matching bases on actual parameters ai (values) and formal variable
parameters pi (input place holder). The pattern bit-mask M specifies actual
(TV,TR) and formal parameters (PR,PS). Database input operations return
the values of the formal parameters of the tuple with actual values. The input
operations with probe behaviour (try*) will return a status value, too.

type Tupl eArgumentKind = {TV, TR, ANY, PR, PS, MORE }

An actual parameter of a tuple is either a value (TV) or a reference to a agent
body variable (TR) used to fetch the current value of the variable. A formal
parameter of a pattern template tuple is either a wild-card place holder (ANY),
a variable reference (PR), or a variable value returned on the stack (PS). The
pattern bit-masks can be chained using the MORE value.

AFL AML Stack Description
out VAL(0) our ( a1l a2 .. Store a d-ary tuple in
$7C M--) the database.
mar k our ( al a2 .. Ift > 0 then a d-ary
MT --) marking (temporary)

tuple with time-out t is
stored in the database.

in VAL(O0) IN ( al a3 .. Read and remowe a
QBLOCK M -- tuple from the
pi .. p2 ) |database. Only
parameters are
returned.

To distinguish actual
and formal parameters,
a pattern mask p is
used (n-th bit=1:n-th
tuple element is a
value, n-th bit=0: is is a
parameter).

27



tryin I'N ( al a3 Try to read and remove
$7D MT -- a tuple. The parameter t
pi p2 |specifies a time-out. If t
0) = -1 then the operation
is non-blocking. Ift =0
( al a3 then the behaviour is
MT -- equal to the in
al a3 operation. If there is no
MT 1) matching tuple, the
original pattern is
returned with a status 1
on the top of the data
stack, which can be
used by a following
?block statement.
Otherwise a status 0 is
returned and the
consumed tuple.
rd VAL(0) RD ( al a3 Read a tuple from the
@BLOCK M -- database. Only
pi p2 ) |parameters are returned.
tryrd RD ( al a3 Try to read a tuple from
$7E MT -- the database. Only
pi p2 parameters are
0) returned. Same
behaviour as the
( al a3 .. tryi n operation.
MT --
al a3 .. M
T1)
?exi st VAL(-2) RD ( al a3 .. Check for the
M -- availability of a tuple.
o|1) Returns 1 if the tuple
does exist, otherwise 0.
Is processed with a
RD/t ryrd and t=-2.
rm VAL(-2) IN ( a1l a2 .. Removwe tuples
M--) matching the pattern.

Tuple space operations based on pattern matching

( enum Tupl eArgunentKind [1] TV TR ANY PR PS MORE ;
Type! 'l

APL: out ( SENSOR, 100, 10);
AFL: SENSOR 100 10 Oo{ TV, TV, TV} out

Built-in




AML: 47 100 10 0ol11l Otupletinme OUT

APL: i n( SENSOR, ?x, ?y)

AFL: SENSOR 00o{TV,PS,PS} in x ! y !

AML: 47 00155 Otnp IN REF(x) STORE REF(y) STORE
APL: i n( SENSOR, ?x, 10)

AFL: SENSOR 10 ref(x) 00{TV,PR TV} in

AML 47 10 2LUTIND 00141 Otrmo IN

APL: stat:=try_in(1000, SENSOR, ?x, 10)

AFL: SENSOR 10 0o{TV, PS, TV} 1000 tryin if x ! then
AML: 47 10 00151 1000 IN <status?> REF(x) STORE
APL: exi st ?( SENSOR, ?, 10)

AFL: SENSOR 10 00{TV, ANY, TV} ?exi st
AML: 47 10 00131 -2exist RD <status?>

Examples of tuple space operations and usage of the pattern mask

Examples
Sone Code
Version
Version: 1.4.3
Revision: Change of tuple space operations semantics, introduction of value
constructors (octal, hexadecimal)
Author: Stefan Bosse

See Also

AVM Architecture

Programming > AFL Overview

29



30



	Introduction
	Programming
	AFL Overview
	Stacks
	Program Structure
	Code Lookup Table
	Virtual Machine Instruction Set
	Mathematical Operations and Values
	Control Operations
	Code Frames
	Stack and Data Operations
	Mobility Operations
	Process Control Operations
	Communication Operations
	Examples



