
Table of Contents

AFL 2

AFL Overview & Introduction 3
AFL Data and Math 8
AFL Control 15
AFL Code Frames 20
AFL Mobility 24
AFL Process Control 26
AFL Communication 31

DOS 35

RPC 36
RPC Message Handler 37
RPC Client-Server API 39

Scheduler 42
Task Context 43
Task Scheduler 47
Task Functions 49
Mutex Lock 52

Index 54

AFL

Description

AFL is the Agent Forth Programming Language (αFORTH). There is a machine
instruction subset AML (Agent Forth Machine Language) that can be directly
executed by the Agent Forth Virtual Machine (AFVM). Agent Forth consists of
common stack-based Forth operations and special agent-related instructions.

Content

1. AFL Overview and Introduction
2. AFL Data and Math Operations
3. AFL Control Operations
4. AFL Code Frames
5. AFL Mobility
6. AFL Process Control
7. AFL Communication

AFVMDOS - AFL

2

AFL Overview and Introduction

Name

AFL Programming Language - Agent Forth (αFORTH) Overview

Synopsis

par p TYP
_var x TYP
_:A1 .. ;
_:A2 .. ;
_:f .. ;
_:$S .. ;
_:%TRANS
_ |A1 ε ?A2 ε ?A3 ..
_ |A2 ..
_;

Description

Long description ...

Stacks

Data Stack
_ (v1 v2 v3 -- r1 r2 r3)
Return Stack
_R(v1 v2 v3 -- r1 r2 r3)

The top of the stack is the right underlined element of the group (i.e., r
3

). It is
assumed that the data width of the data and return stack is equal (n bit) and that
the data width is equal to the instruction code size to enable code morphing
support by using the data stack. Common data- and instruction code widths are
16 and 24 bits.

Code Frame

The code frame is a self-contained unit which holds all code and persistent data.
A code frame consists of a boot section, which mainly reflects the control state of

AFVMDOS - AFL Overview and Introduction

3

the program and which can be modified by using code morphing operations. The
code frame provides self-initialization by executing instructions in the boot
section, by executing instructions in the code frame body, and by definition
instructions (word, variable, transition) within the code frame. A code frame will
always start execution at the top of the frame by executing the boot section. A
newly created or migrated code frame will pass through the entire code frame
until the transition section is reached. The transition section has a boot header,
too, which can be modified, and branches to the next activity row to be executed.

_1. Boot Section
_ B1 B2 B3 B4 B5 B6 B7 B8 .. B16
_---
_2. Lookup and Relocation Table LUT [N]
_ FLAG OFF FRAME SEC
_ FLAG OFF FRAME SEC ...
_---
_3. Variable Definition
_ VAR Vi TYP [N]
_4. Initialization Instructions
_ C1 C2 C3 ..
_5. Activity Word Definition
_ :*Ai REF REF .. ;
_6. Function Definition
_ :Fi .. ;
_7. Signal Handler Definition
_ :$Hi .. ;
_---
_8. Transition Table Definition Sections
_ :%Ti B1 B2 B3 B4
_ |Ai {1 .. ?Ai+1} {2 ..} ..
_ |Ai+1 {1 .. ?Ai+2} {2 ..} ..
_ ..
_ ;
_---

Code Frame Layout

AFL AML Description

par p1 int
_par p2 int
_..
_var x int
_var y int
_..

VAR VAL(LUT#)
VAL(size) DATA
_..
_VAR VAL(LUT#)
VAL(size) DATA
_..

Definition of agent parameters
and variables

AFVMDOS - AFL Overview and Introduction

4

AFL AML Description

:*act
_ ..
_;

DEF
_VAL (LUT#)
_VAL (size)
_..
_EXIT

Definition of an activity word

:func
_ ..
_;

DEF
_VAL (LUT#)
_VAL (size)
_..
_EXIT

Definition of a generic function
word

:$handler
_ ..
_;

DEF
_VAL (LUT#)
_VAL (size)
_..
_EXIT

Definition of a signal handler
word

:%trans
_ |act1 .. ?act2 .. .
_ |act2 .. ?act3 .. .
_;
trans

TRANS
_VAL (LUT#)
_VAL (size)
_NOP NOP NOP NOP
_TCALL 11
_..

Definition of a transition table
word and default transition
table call.

AFL Program Structure

Code Lookup Table

The program code embeds a lookup table (LUT) with relocates code addresses
of variables, activity, and function words. The LUT consists of rows, each
consisting of four columns: { FLAG, OFF, FRAME, SEC }. The FLAG column
specifies the kind of the LUT row entry { FREE, VAR, ACT, FUN , FUNG, TRANS}.
The OFF and FRAME columns specify code addresses, whereas the SEC
column entry is used for auxiliary values, mainly for caching of transition section
branches related with activity words. The SEC column can be packed with the
FLAG field optimizing resource requirements. The first row of the LUT always
contains the relocation data for the current transition table word used to load the
TP register which points to the start of the boot section of the transition table.

Virtual Machine Instruction Set

Only a sub-set AML of all available AFL operators are implemented on VM
instruction set level. They are added with a AML column in the following
instruction set tables. The instruction code format is divided into a short and a
long code format. The short code enables code packaging in one instruction

AFVMDOS - AFL Overview and Introduction

5

word to speed up code processing. The short code format is 8 bit wide, the long
code format is equal to the full code and data word width (e.g., 16 or 24 bits).
The first two highest bits determine the code format. The long code format is
used by instructions with arguments, like for example, branch or value literal
words, indicated in the pseudo notation by enclosing the argument in
parentheses, i.e., BRANCH(-100).

KIND SELECTOR OPCODE ARGUMENT VALUE

Value 1X - - (N-1) data
bits

Short
Command

01 6 bits - -

Long Command
A

00 01 10 11 (N-4) data bits -

Long Command
B

00 00XXX (N-7) data bits -

Instruction code format (N: instruction word and data width, LSB format)

Code and Call Frames

The following terms must be distinguished:

Code Frame Offset CFO

This is the absolute code address offset of a program code frame in the
current code segment CS. The code segment CS is partitioned into fixed size
code frames.

Code Frame Number CFN

This is the index number of the code frame. CFN=CFO/CF_SIZE.

Negative Code Frame Number CFN

Negative code frame numbers are relative to the root code frame of the
current process. The root frame has number -1, the next linked frame has
number -2, and so on. Code frames are linked if the last word of a code frame
is a NEXT(CFN) instruction!

Each time a word is called, a call frame is stored on the return stack. This call
frame consists of a tuple (ip,cf), which points to the return address of the next
word to be executed after the call. There are two different word calls: transition
calls using TCALL and generic function word calls using the CALL instruction. In

AFVMDOS - AFL Overview and Introduction

6

the case of activity word calls from within the transition table section using
TCALL the current original (absolute) code frame offset taken form the CF
register must be converted to a relative code frame number. On return, the call
frame must be converted again to an absolute code offset to load the CF register
again. This relative code frame numbering is required for code and process
migration support. After migration absolute code frame offsets and numbers will
change and may never be part of the data state of the process before migration,
that means, stored on the stacks! Relative code frames other than the root frame
are expensive to process because the code frame list must be iterated each
time.

Data Types

Type Size Description

integer word width Signed Integer

int32 32/(word width) words Long signed integer

char Scalar: word width
Array: packed 8 bit and
(word width / 8) character /
word or unpacked (eq.
word width)

Character or signed byte

byte Scalar: word width
Array: packed 8 bit and
(word width / 8) bytes /
word or unpacked (eq.
word width)

Unsigned Byte

word Word width Unsigned Word

float 2-4 words Floating Point Number

bool word width Boolean

AFVMDOS - AFL Overview and Introduction

7

AFL Data & Math Operations

Name

AFL Instruction Set: Data and Mathematical Operations

Synopsis

Paragraph text...

Mathematical Operations and Values

The set of mathematical operators consists of arithmetic, relational, and logical
operations. The operands are retrieved from the data stack and the result is
stored on the data stack again.

AFL Value AML Stack Description

n
0xXXX 0bBBB
0oOOO

VAL(n)
$80+n

(-- v) Pushes a signed
constant value to the
data stack. The value v
can be in the range
{-2n-2..2n-2-1} with n bit
data width of the code
instruction.

N
0xXXX 0bBBB
0oOOO

VAL(n1)
$80+n1
EXT(sign)
$06+sign

(-- v) Pushes an unsigned
constant value to the
data stack followed by
a MSB sign extension
(sign=+-1) word for
large values. The value
v can be in the range
{-2n-1..-2n-2-1} or
{2n-2..2n-1-1} with n bit
data width.

0/1 ZERO/ONE
$40/$41

(-- v) Pushes value zero or
one to the data stack.

AFVMDOS - AFL Data & Math Operations

8

AFL Value AML Stack Description

long EXT(LONG)
$06+$10

(--) Long operation prefix:
values can be
combined to double
word-size values, and
artihm., log., and rel.
operations can be
extended to use the
long word values.

Value literals

AFL Operator AML Stack Description

+ ADD
$42

(v
1
v
2
-- r) Addition (signed) r =

v1+v
2

- SUB
$43

(v
1
v
2
-- r) Subtraction (signed) r

= v
1
-v

2

* MUL
$44

(v
1
v
2
-- r) Multiplication (signed) r

= v
1
*v

2

/ DIV
$45

(v
1
v
2
-- r) Division (signed) r =

v1/v
2

mod MOD
$46

(v
1
v
2
-- r) Division (signed)

returning remainder r =
v
1
% v

2

negate NEG
$47

(v -- r) Negate operand r=-v

abs - (v -- r) Return positive
equivalent r= if v

1
<0

then -v
1
else v

1

min - (v
1
v
2
-- r) Return smallest number

r= if v
1
<v

2
then v

1
else v

2

max - (v
1
v
2
-- r) Return biggest number

r= if v
1
>v

2
then v

1
else v

2

random RANDOM
$69

(min max --
r)

Return a random
number in the range
interval [min,max]

Arithmetic Operations

AFVMDOS - AFL Data & Math Operations

9

AFL Operator AML Stack Description

< LT
$4A

(v
1
v
2
-- r) Lower than (signed) r =

(v
1
<v

2
)

> GT
$4B

(v
1
v
2
-- r) Greater than (signed) r

= (v
1
>v

2
)

= EQ
$4C

(v
1
v
2
-- r) Equal (signed) r =

(v
1
=v

2
)

<> - (v
1
v
2
-- r) Not equal (signed) r =

(v
1
<>v

2
)

<= LE
$4D

(v
1
v
2
-- r) Lower than or equal r =

(v
1
<=v

2
)

>= GE
$4E

(v
1
v
2
-- r) Greater than or equal r

= (v
1
>=v

2
)

0= - (v -- r) Test for zero

0<> - (v -- r) Test for non zero

within - (v
1
v
2
v
3
-- r

)
Test if v

2
is within [v

1
,v

3
]

Relational Operations

AFL Operator AML Stack Description

and AND
$50

(v
1
v
2
-- r) r = v

1
∧ v

2

or OR
$51

(v
1
v
2
-- r) r = v

1
∨ v

2

xor - (v
1
v
2
-- r) r = v

1
xor v

2

not NOT
$52

(v -- r) r = ¬v

invert INV
$53

(v -- r) r = ∀bits b
i
(v): ¬b

i

lshift LSL $56 (v n -- r) r = shift v left
by n bits

rshift LSR $57 (v n -- r) r = shift v right
by n bits

Logic bit-wise Operations

AFVMDOS - AFL Data & Math Operations

10

Stack and Memory Control

AFL AML Stack Description

dup DUP
$68

(v -- v v
)

Duplicate the top
stack item

?dup - (v -- 0:v
v)

Duplicate the top
stack item only if it is
not zero

drop DROP
$6A

(v --) Discard the top stack
item

swap SWAP
$6B

(v
1
v
2
-- v

2
v
1
)

Exhange the top two
stack items

over OVER
$6C

(v
1
v
2
-- v

1
v
2
v
1
)

Make a copy of the
second item on the
stack

nip - (v
1
v
2
-- v2

)
Discard the second
stack item

tuck - (v
1
v
2
-- v2

v1 v2)
Insert a copy of the
top stack item
underneath the
currents second item

rot ROT
$6D

(v
1
v
2
v
3
--

v
2
v
3
v
1
)

Rotate the positions
of the top three stack
items

-rot - (v
1
v
2
v
3
--

v
3
v
1
v
2
)

Rotate the positions
of the top three stack
items

pick(n)
pick

FETCH(DS,-n)
$02+(-n)
// PICK $67

(v
n
.. v

1
--

.. v
1
v
n
)

(v
n
.. v

1
n

--
.. v

1
v
n
)

Get a copy of the n-th
data stack item and
place it on the top of
the stack.
(pick(1):dup,
pick(0): n from
stack)

set(n)
set

STORE(DS,-n)
$04+(-n)
// SET $66

(v
n
.. v

1
v

--
v
n
* .. v

1
)

(v
n
.. v

1
v

n --
v
n
* .. v

1
)

Modify n-th data stack
item. (set(0): n
taken from stack!)

AFVMDOS - AFL Data & Math Operations

11

AFL AML Stack Description

rpick RPICK
$62

R(v
n
.. v

1
--
.. v

1
)

(n -- v
n
)

Get a copy of the n-th
return stack item and
place it on the top of
the data stack.

rset RSET
$63

R(v
n
.. v

1
--
v
n
* .. v

1
)

(v n --)

Modify n-th return
stack item.

2dup - (v
1
v
2
-- v

1
v
2
v
1
v
2
)

Duplicate the top
cell-pair of the stack

2drop - (v
1
v
2
--) Discard the top-cell

pair of the stack

2swap - (v
1
v
2
v
3
v
4

--
v
3
v
4
v
1
v
2
)

Swap the top two
cell-pairs on the stack

2over - (v
1
v
2
v
3
v
4

--
v
1
v
2
v
3
v
4
v
1

v
2
)

Copy cell pair v
1

v
2

to
the top of the stack

clear CLEAR
$5B

(.. --)
R(.. --)

Clear data and return
stack.

Data Stack (SS) Operations

AFL AML Stack Description

>R TOR
$64

(v --)
R(-- v)

Push the top data stack
item to the return stack

R@ - R(v -- v)
(-- v)

Copy the top return stack
item to the data stack

R> FROMR
$65

R(v --)
(-- v)

Pop the top return stack
item to the data stack

2>R - (v
1
v
2
--)

R(-- v
1
v
2
)

Push the top data stack
cell pair to the return
stack

2R@ - R(v
1
v
2
-- v

1
v2)
(-- v

1
v
2
)

Copy the top return stack
cell pair to the data stack

AFVMDOS - AFL Data & Math Operations

12

AFL AML Stack Description

2R> - R(v
1
v
2
--)

(-- v
1
v
2
)

Pop the top return stack
ce

Return Stack (RS) Operations

AFL AML Stack Description

!
!x

STORE/SET
$66
STORE(LUT(x))
$04+#

(ref v --)
(v --)

Store the value v at
memory cell address cf
+ off retrieved by a
lookup in the LUT[ref].

@
@x

FETCH/PICK
$67
FETCH(LUT(x))
$02+#

(ref -- v)
(-- v)

Fetch and return the
value from memory cell
address cf + off
retrieved by a lookup in
the LUT[ref].

var x typ [
[size]];

- (--) Define and declare a
new variable x with a
data type typ. Arrays
are defined by adding a
size operators [size].
Each variable is
assigned an AC unique
LUT relocation index n.

const C init - - Define a symbolic
constant value (def C =
init)

- VAR # S DATA ..
$70
DATA
$00

(--)
(--)

On VM level a variable
is specified by their
LUT index # and the
size S of the reserved
code area in words
following the VAR
definition.

-
ref(x)
%x

REF(#)
$08+#
VAL(LUT(x))

(-- off cf
)
(-- #)

Inside word bodies or
on top-level the REF
operator pushes the
code offset and code
frame of referenced
object relocated by the
LUT on the data stack.

AFVMDOS - AFL Data & Math Operations

13

Data Types

Examples

Code
_Code

Authors

Paragraph text...

See Also

Paragraph text...

AFVMDOS - AFL Data & Math Operations

14

AFL Control Operations

Name

AFL Control Flow Operations

Synopsis

if else then
_case of end of endcase
_exit
_do loop
_do loop+
_begin again
_begin until
_begin while repeat

Description

Program control structures are used to control the program flow either by
down-directed branching or by using up-directed loops.

Branches

There are boolean conditional and expression multi-value branches. The
conditional parameters are stored on the data stack. Commonly the high-level
control structures are transformed in low-level flow control supported by AML
(relative branches). The call instruction stores the current IP/CF pair on the
return stack before the control flow is branched to the user defined function
word.

AFL AML Stack Description

if
true words
then

- (flag --) If the flag value on top
of the stack is non-zero
(true), the words
between if and then
are executed.

AFVMDOS - AFL Control Operations

15

AFL AML Stack Description

if
true words
else
false words
then

- (flag --) If the flag value on top
of the stack is non-zero
(true), the words
between if and else
are executed,
otherwise the words
between else and
then.

case key
v1 of .. endof
v2 of .. endof
..
default words
endcase

- - Value-based
case-select statement.
The value of the key is
compared with a list of
possible values {v

1
, v

2
,

..}. If a value matches
the key, the words
between of and endof
are executed.

exit EXIT
$60

R(ip cf --
)
(-- r

1
r
2
..

)

The exit word causes
a return from the
current definition call.
The code branch point
and code frame are
taken from the return
stack. An exit call with
an empty return stack
kills the process.

- NOP
$61

(--) No operation
instruction

- BRANCH(∆)
$10+∆

(--) Branch code execution
relative to current code
position IP in the same
code frame

- BRANCHZ(∆)
$20+∆

(flag --) Branch code execution
relative to current code
position IP in the same
code frame iff the flag
on the data stack is
zero (false).

word CALL(#)
$0E+#

R(-- ip cf
)

Call a word and push
the current code
position IP+1 on the
return stack and the

AFVMDOS - AFL Control Operations

16

AFL AML Stack Description

current code frame,
which is required by
exit. The word code
address and the code
frame are taken from
the LUT[#]. A call of a
transition word sets the
current active transition
table and copies LUT
entry to LUT row 0! No
call frame is pushed!

- BRANCHL
$5C

(ip cf --) Performs a long branch
to a different code
frame. Negative code
frame numbers are
relative to the root
frame (cf=-1: root
frame).

{*n .. } (
enabled)
{n .. } (
disabled)

BBRANCH(∆)
$00+∆

(--) Dynamic blocks: a
conditional branch
which can be activated
(∆S≥0, block disabled)
or deactivated (∆<0,
block enabled). If
disabled, the block
spawned by ∆ is
skipped. E=0 and ∆=0
is equal to the DATA
word behaviour (NOP
data marker and
placeholder)!

Branch control structures

Loops

There are counting and conditional loops. The loop parameters and conditional
values are stored on the data stack.

AFVMDOS - AFL Control Operations

17

AFL AML Stack Description

do .. loop
do ..
loop+

- (limit index
0
--

)
(limit index

0
--

)
(increment)
R(-- i)

The words between do
and loop are repeated
as long as index < limit.
Loop increments a copy
of the index counter on
the top of the return
stack.

begin .. again - (--) This unconditional loop
finishes only if an
exception is thrown.

begin ..
until

- (--)
(flag --)

This loop is executed at
least one time, and
repeats execution as
long as the flag
condition is false.

begin ..
while ..
repeat

- (--)
(flag --)

The loop starts at
begin and all the words
up to while are
executed. If the flag
consumed by while is
true, the words between
while and repeat are
executed, finally looping
again to begin.

i j k - (-- index) Pushes the current loop
index value on the data
stack. The inner moss
first-level loop is
referenced with i, and
outer higher level loops
with j and k.

Loop control structures

Examples

Code
_Code

AFVMDOS - AFL Control Operations

18

Authors

Stefan Bosse

See Also

AFL Overview

AFVMDOS - AFL Control Operations

19

AFL Code Frames

Name

AFL Code Frame Definition, Control, and Modification

Synopsis

:NAME
_::NAME
_:%NAME
_sig NAME :$NAME
_import NAME try import NAME with NAME export NAME
_c> v>c >c s>c r>c new load !cf @cf

Code definition and import operations

AFL AML Stack Description

:NAME DEF # Sn
$74
REFN(n) ..

(--) Defines a new word. A
(local) word definition
instruction is followed
by the LUT row index
and the size of the
word body. The head
of the word body can
contain references.

::NAME DEFN
"NAME"
S
$75

(--) Defines a new word
which can be stored in
the word dictionary
using the export
instruction.

:%NAME TRANS
$76

(--) Defines the transition
table.

sig NAME
:$NAME

DEF # Sn (--) Defines a signal
handler word. The
word name must be
equal to an already
defined signal.

AFVMDOS - AFL Code Frames

20

AFL AML Stack Description

import NAME
try import
NAME with name

IMPORT # "NAME"
$77

(--) Import a global word. If
the global word does
not exists than the
agent terminates. To
avoid this behaviour,
use the try statement
instead, which uses a
local word instead.

export NAME EXT(EXPORT)
$06+$20

(--) Exports a word to the
global dictionary (and
CCS), which was
defined with the
::NAME environment.

Code morphing operations

AFL AML Stack Description

c> FROMC W1 W2
...
$72

(n -- c) Push the n following
code words on the
data stack

v>c VTOC
$5D

(v n off -- off')
CS[cfs+off]: cv ..
CS[cfs+off+1]: EXT ..

Convert n values from
the data stack in a
literal code word and
extension if required.
The new code offset
after the last inserted
word is returned.

>c TOC
$73

(c1 c2 .. n off --)
CS[cfs+off]: c1 c2 ..
cn

Pop n code words
from the data stack
and store them in the
morphing code frame
starting at offset off.

s>c STOC
$54

(.. off -- off')
R(.. --)

Convert all data and
return stack values to
code values in the
morphing code frame
starting at offset off.
Returns the new
offset after the code
sequence.

AFVMDOS - AFL Code Frames

21

AFL AML Stack Description

r>c REF RTOC
$55

(off ref -- off') Transfer the
referenced object
(words, transitions,
variables) from the
current process to the
morphing code frame
starting at offset off.
Returns the new
offset after the code
sequence.

new NEWCF
$78

(init -- offinit=1 cf#
)

Allocates a new code
frame (from this VM)
and returns the code
frame number (not CS
offset!). If init = 1, then
a default (empty) boot
and LUT section is
created, with sizes
based on the current
process. The returned
offset value points to
the next free code
address in the
morphing code frame.

load LOAD
$71

(cf# ac# --) Load the code
template of agent
class AC in the
specified code frame
number or copy the
current code frame
(ac=-1). If the
template spawns
more than one frame,
additional frames are
allocated and linked.

!cf SETCF
$79

(cf# --) Switches code
morphing engine to
new code frame
(number). The root
frame of the current
process can be
selected with cf#=-1.

AFVMDOS - AFL Code Frames

22

AFL AML Stack Description

@cf GETCF
$5E

(-- cf#) Get current code
frame number (in CS
from this VM).

Code frame control operations

AFL AML Stack Description

!lut(∆) SETLUT(∆)
$30+∆

(--) Set LUT offset (LP).

lut [N] LUT N*3 DATA
$7A
DATA
$00

(--) Define a LUT with N
rows.

template AC - (--) Defines a code frame
as a template which is
stored in the global
CCS and dictionary.

- END
$6E

(--) Marks the end of a
code frame.

- NEXT #CF
$6F

(--) Chains this code frame
with a next one.

Examples

Code
_Code

Authors

Stefan Bosse

See Also

AFL Overview

AFVMDOS - AFL Code Frames

23

AFL Mobility

Name

AFL Code Frame Mobility Instructions

Synopsis

move
_?link

Description

Migration of agents require the update of the boot sections of the code frame
and the transfer of the code frame to a neighbour node. Migration to a different
VM requires the copying of the code frame.

A snapshot is created before code frame migration by dumping the stack
content (from the data and return stack) to the primary boot section and by
modifying the secondary boot section on the transitions definition word storing
the code entry point after migration.

AFL AML Stack Description

move MOVE
$7F

(dx dy --) Migrate agent code to
neighbour node in the
given direction. The
current data and return
stack content is
transferred and morphed
to the boot code section.
The transition boot
section is loaded with a
branch to the current
IP+1.

?link LINK
$48

(dx dy --
flag)

Check the link
connection status for the
given direction. If flag=0
then there is no
connection, if flag=1 then
the connection is alive.

AFVMDOS - AFL Mobility

24

Migration operations

Examples

Code
_Code

Authors

Stefan Bosse

See Also

AFL Overview

AFVMDOS - AFL Mobility

25

AFL Process Control

Name

AFL Process and Agent Control including Reconfiguration

Synopsis

Paragraph text...

Description

Agent processes can be created at run-time by any other agent. An agent
process can be created from a template or forked from an existing parent agent
(composing parent-child groups). Each agent process can created with a distinct
set of parameter arguments. In the case of process forking, a copy and snapshot
of the current code frame is created. Both processes will continue execution with
the same data and control state except the process arguments.

Transition Definition

The transition definition table section consists of rows, each starting with a
specific activity word and a sequence of conditionalö activity branching
instructions.

AFL AML Stack Description

|Ai TCALL(#)
$0A+#

(--)
R(-- ip cf)

Call next activity word
A

i
. The word address

and the code frame are
taken from the LUT.

AFVMDOS - AFL Process Control

26

AFL AML Stack Description

?Ai TBRANCH(#)
$0C+#
NOT BRANCHZ(∆)

(flag --) Branch to next transition
row for activity A

i
if the

flag is true. The relative
branch displacement for
the appropriate
TCALL(#) target is first
searched by using the
LUT entry for the
respective activity. If this
fails, the entire transition
section is searched (and
the result is cached in
the LUT).
Optimization:
replacement with
conditional branch,
requiring immutable
transition section.

. END
$6E

(--) End marker, which
marks the end of a
transition table row.

Transition Definition Modification

AFVMDOS - AFL Process Control

27

AFL AML Stack Description

t+ A
i
#b

t- A
i
#b

t* A
i
#b

!t trans

BLMOD
$59
TRSET
$5A

(ref# b#
flag sel --)
(ref# --)

Modifies transition table
which can be selected by
the !t statement. Each
transition bound to an
outgoing activity is
grouped in a block
environment.
Transition are modified
by enabling or disabling
the blocks in a transition
row using the BLMOD
operation. The transition
modifiers reference the
block number b# in the
respective transition row.
If b#= 0 all dynamic
blocks (in the t-row) will
be disabled.

Process Control

AFL AML Stack Description

?block QBLOCK
$7B

(flag --) Suspend code
processing if the flag is
not zero. If a schedule
occurs, the current data
and return stack
content is transferred
and morphed to the
boot code section with
a branch to the current
IP-1.

AFVMDOS - AFL Process Control

28

AFL AML Stack Description

run RUN
$5F

(arg1 ..
#args cf#
flag --
id)

Start a new process
with code frame (from
this VM), returns the
identifier of the newly
created process. The
arguments for the new
process are stored in
the boot section in the
code frame of the new
process.
If flag = 1 then a forked
process is started. The
boot section of the new
code frame and the
boot section of the
transition table is
modified.

fork - (arg1 ..
argn #args --
pid)

Fork a child process.
The child process
leaves immediately the
current acitivity word
after forking, the parent
process continue.

create - (arg1 ..
argn #args
#ac -- pid)

Create a new agent
process.

kill ..
aid=-1: CLEAR
EXIT

(aid --) Terminate and destroy
agent. For self
destruction theaid must
be equal -1.

suspend SUSP
$4F

(.. flag --
)
R(.. --)

Suspend the execution.
The current CF and
IP+1 is saved in the
current transition table
boot section. The
process state will be
changed to
PROC_SUSP. If flag = 1
then the code frame is
fully reinitialized after
resume and the stacks
must be already
dumped to the boot

AFVMDOS - AFL Process Control

29

AFL AML Stack Description

section. If flag = -1 then
the boot section is
initialized and the
stacks are dumped,
after resume the next
instruction is executed
directly w/o full code
frame setup.

Examples

Code
_Code

Authors

Stefan Bosse

See Also

AFL Overview

AFVMDOS - AFL Process Control

30

AFL Communication

Name

AFL Agent Interaction and Communication

Synopsis

signal S :$S raise timer
_out mark in rd tryin tryrd rm

Description

Agents can communicate with each other by two methods: (1) Signals; (2)
Tuples. Signals are simple messages that can be propagated in the network.
they are primarily used for parent-child agent interaction. Tuples can only be
exchanged by agents located on the same node by accessing a tuple database.
Signals are asynchronously processed, thereby tuple access can be
handled synchronously on the consumer side by agent blocking.

Signals

AFL AML Stack Description

signal S - (--) Defines a signal S.

:$S .. ; DEF (arg --) Defines a handler for
signal S. If called, the
signal argument is on
the top of the data stack.
The signal argument is
pushed on the data
stack.

raise RAISE
$49

(arg s pid
--)

Send a signal s to the
process pid.

timer TIMER
$58

(sig# tmo --
)

Install a timer (tmo>0)
raising signal sig if
timeout has passed. If
tmo=0 then remove
timer.

AFVMDOS - AFL Communication

31

Tuple Spaces

A tuple is basically an ordered list of values. The single values can have different
data types, in contrast to mono-typed arrays. A tuple has a dimension like a
vector determining the number of elements. Tuple space access is generative,
i.e., there are producer and consumer (processes / agents), and a tuple stored in
the tuple database by a producer can still exist after the producer process
(agent) had terminated.

Tuple matching bases on actual parameters a i (values) and formal variable
parameters p i (input place holder). The pattern bit-mask M specifies actual (TV
, TR) and formal parameters (TR , PS). Database input operations return the
values of the formal parameters of the tuple with actual values. The input
operations with probe behaviour (try*) will return a status value, too.

type TupleArgumentKind = {TV, TR, ANY, PR, PS, MORE }

An actual parameter of a tuple is either a value (TV) or a reference to a agent
body variable (TR) used to fetch the current value of the variable. A formal
parameter of a pattern template tuple is either a wild-card placeholder (ANY), a
variable reference (PR), or a variable value returned on the stack (PS). The
pattern bit-masks can be chained using the MORE value.

AFL AML Stack Description

out VAL(0) OUT
$7C

(a1 a2 .. M
--)

Store a d-ary tuple in the
database.

mark OUT (a1 a2 .. M
T --)

If t > 0 then a d-ary
marking (temporary)
tuple with timeout t is
stored in the database.

in VAL(0) IN
QBLOCK

(a1 a3 .. M
--
pi .. p2)

Read and remove a
tuple from the database.
Only parameters are
returned.
To distinguish actual and
formal parameters, a
pattern mask p is used
(n-th bit=1:n-th tuple
element is a value, n-th
bit=0: is is a parameter).

AFVMDOS - AFL Communication

32

AFL AML Stack Description

tryin IN
$7D

(a1 a3 .. M
T --
pi .. p2 0)
(a1 a3 .. M
T --
a1 a3 .. M T
1)

Try to read and remove
a tuple. The parameter t
specifies a timeout. If t =
-1 then the operation is
non-blocking. If t = 0
then the behaviour is
equal to the in
operation. If there is no
matching tuple, the
original pattern is
returned with a status 1
on the top of the data
stack, which can be
used by a following
?block statement.
Otherwise a status 0 is
returned and the
consumed tuple.

rd VAL(0) RD
QBLOCK

(a1 a3 .. M
--
pi .. p2)

Read a tuple from the
database. Only
parameters are returned.

tryrd RD
$7E

(a1 a3 .. M
T --
pi .. p2 0)
(a1 a3 .. M
T --
a1 a3 .. M T
1)

Try to read a tuple from
the database. Only
parameters are returned.
Same behaviour as the
tryin operation.

?exist VAL(-2) RD (a1 a3 .. M
--
0|1)

Check for the availability
of a tuple. Returns 1 if
the tuple does exist,
otherwise 0. Is
processed with a RD/
tryrd and t=-2.

rm VAL(-2) IN (a1 a2 .. M
--)

Remove tuples matching
the pattern.

Tuple Operations

enum TupleArgumentKind [1] TV TR ANY PR PS MORE ;
_

_APL : out(SENSOR , 100 , 10);

AFVMDOS - AFL Communication

33

_AFL : SENSOR 100 10 0o{ TV , TV , TV } out
_AML : 47 100 10 0o111 0tupletime OUT
_

_APL : in (SENSOR , ?x , ?y)
_AFL : SENSOR 0o{ TV , PS , PS } in x ! y !
_AML : 47 0o155 0tmo IN REF (x) STORE REF (y) STORE
_

_APL : in (SENSOR , ?x , 10)
_AFL : SENSOR 10 ref(x) 0o{ TV , PR , TV } in
_AML 47 10 2LUTIND 0o141 0tmo IN
_

_APL : stat: = try_in(1000 , SENSOR , ?x , 10)
_AFL : SENSOR 10 0o{ TV , PS , TV } 1000 tryin if x ! then
_AML : 47 10 0o151 1000 IN status? REF (x) STORE
_

_APL : exist?(SENSOR ,?, 10)
_AFL : SENSOR 10 0o{ TV , ANY , TV } ?exist
_AML : 47 10 0o131 -2exist RD status?

Examples of tuple space operations and usage of the pattern masks

Examples

Code
_Code

Authors

Stefan Bosse

See Also

AFL Overview

AFVMDOS - AFL Communication

34

DOS

Description

The Distributed Operating System layer is used to compose a virtual
communicating machine of heterogeneous network nodes, mainly Internet and
Intranet connected computers and servers.

Content

1. DOS RPC
2. DOS Scheduler

AFVMDOS - DOS

35

DOS RPC

Name

Remote Procedure Call API (RPC)

Synopsis

JavaScript DOS
_Module RPC

Description

The Remote Procedure Call API (RPC) is used for point-to-point communication
between processes, nodes, and Browser applications.

Content

1. RPC Message Handler
2. RPC Client-Server API

AFVMDOS - DOS RPC

36

DOS RPC: RPC Message Handler

Module

JavaScript Rpc

Object Interface

enumeration Operation = {
_ SEND
_ RECV
_ TRANSREQ
_ TRANSREP
_ TRANSAWAIT
_ TRANS
_ GETREQ
_ PUTREP
_ IAMHERE
_ WHOIS
_ LOOKUP
_}
_

_constructor Rpcio (operation?
_ hdr?: Network.header
_ data?: {Buffer|string}
_ context?: Scheduler.taskcontext
_ callback?: function) →
rpcio :
_{
_ RPC Operation
_ operation :Operation
_ Public server port (used for GETREQ only)
_ pubport :Network.port
_ Connection Link port (used by VLC only, incoming link)
_ connport :Network.port
_ RPC transaction header
_ header :Network.header
_ RPC data buffer
_ data :Buffer
_ pos :number
_ Process Context
_ context :Scheduler.taskcontext
_ Reply callback (local RPC only)
_ callback : function(rpcio)
_ Source host port - From (Request: Caller, Reply: Executor)
_ hostport :Network.port
_ Destination host port - To (Request: Executor, Reply: Caller)
_ sendport :port
_ Message Forwarding
_ hop :number

AFVMDOS - DOS RPC: RPC Message Handler

37

_ hop_max :number
_ Transaction Identifier
_ tid :number
_ Timeout Garbage Management
_ timeout: number
_ Overall Status of the RPC operation
_ status :Network.Status
_ Packet Pool Index
_ index :number
_}

Object Methods

rpcio.init = function(operation,hdr,data,context,callback)
_rpcio.to_xml = function(wrap) → body:string
_rpcio.of_xml = function(xml) → status:number

Description

Each Remote Procedure Call (RPC) operation is handled with a RPCIO object. It
contains the RPC transaction header and optional data. RPCIO handlers are
also used for server localization. A RPCIO handler can be forwarded to a broker
server or to another node host. The host and send ports are used for RPCIO
forwarding. The host port is source of a RPCIO message (the host the message
is coming from), and the send port is the destination host port sending the
message to.

Examples

Code
_Code

Authors

Stefan Bosse

See Also

Paragraph text...

AFVMDOS - DOS RPC: RPC Message Handler

38

DOS RPC: RPC Client-Server API

Module

JavaScript Rpc

Object Interface

constructor RpcInt (router:rpcrouter) →
rpcint : {
_ router :rpcrouter
_ transaction_id :number
_}

Object Methods

rpcint.trans = function(rpcio:rpcio,callback:function(stat:Net.Status))
_rpcint.getreq = function(rpcio:rpcio)
_rpcint.putrep = function(rpcio:rpcio)

Description

A server process executes the getreq operation by supplying the private server
port in the rpcio.header field. The public server port required by the router is
computed from private port (using a port mapping cache). The server request
listening is handled by the RPC router. A server process executing the getreq
operation will be blocked until a matching client request arrives. There can be
multiple server processes listening on the same server port.

A client send a transaction to the server by providing the public server port in the
rpcio.header field.and using the trans operation. If the reply of the
transaction arrives (or the RPC failed), the provided callback function is executed
with the status of the operation. The reply is contained in the original RPCIO
handler.

The RPCIO message is forwarded to the respective server host and passed
finally to the server process, waking up the process. After the server has
serviced the request, it responds with a reply passed by the putrep operation.

AFVMDOS - DOS RPC: RPC Client-Server API

39

Examples

var privhostport = Net.uniqport();
_var pubhostport = Net.prv2pub(privhostport);
_var scheduler = Sch.TaskScheduler();
_var router = Router.RpcRouter(pubhostport);
_var rpc = Rpc.RpcInt(router);
_var privsrvport = Net.port_of_str('12:34:56:78:89:01');
_var pubsrvport = Net.prv2pub(privsrvport);
_

_var dying = false;
_var rpcio = Rpc.Rpcio();
_

_Sch.ScheduleLoop(
_ function () {return !dying;},
_ [
_ function () {
_ rpcio.init();
_ rpcio.header.h_port = privhostport ;
_ rpc.geteq(rpcio);
_ },
_ function () {
_ ... service request ...
_ },
_ function () {
_ rpc.putrep(rpcio);
_ }
_]);

A sample RPC Server

var privhostport = Net.uniqport();
_var pubhostport = Net.prv2pub(privhostport);
_var cap = Net.Capability(pubhostport);
_

_var scheduler = Sch.TaskScheduler();
_var router = Router.RpcRouter(pubhostport);
_var rpc = Rpc.RpcInt(router);
_var privsrvport = Net.port_of_str('12:34:56:78:89:01');
_var pubsrvport = Net.prv2pub(privsrvport);
_ ...
_var stat = Status.STD_UNKNOWN;
_var info = '';
_

_Sch.ScheduleBlock([
_ function () {
_ var rpcio = Rpc.Rpcio();
_ rpcio.header.h_port = cap.cap_port;
_ // rpcio.header.h_priv = cap.cap_priv;
_ rpcio.header.h_command=Command.STD_INFO;

AFVMDOS - DOS RPC: RPC Client-Server API

40

_

_ rpc.trans(rpcio,function (_stat) {
_ stat = _stat;
_ if (stat==Status.STD_OK) info=Buf.buf_get_str(rpcio);
_ });
_ },
_ function () {
_ ...
_ }
_])

A sample RPC Client

Author

Stefan Bosse

See Also

AFVMDOS - DOS RPC: RPC Client-Server API

41

DOS Scheduler

Name

JavaScript Task Scheduler

Synopsis

JavaScript
_Module Scheduler

Description

JavaScript is strictly single threaded. Though timeout callbacks can be used to
execute function apparently concurrently, there is no concept of task blocking.
But most programming models, for example, communication, relies on a
concurrent behaviour.

To avoid deep nesting of asynchronous callback functions, a task scheduler was
invented. A task supports virtualized blocking handled by a scheduler. A
common multi-threaded program flow can be implemented by using the task
scheduler and task contexts (Task Context), though there is still no concurrent
execution or preemption.

• The Scheduler module enables programming of scheduled multi-process
programs compatible with all Browsers and node VMs.

• The scheduler offers linear programming of blocking statements.
• The scheduler offers the implementations of Activity-Transition Graphs

(ATG)
• Timer handler can be created and started like any other procedural action.

Content

1. Task Context
2. Task Scheduler
3. Task Functions
4. Mutex Lock

AFVMDOS - DOS Scheduler

42

DOS Scheduler: Task Context

Module

JavaScript Scheduler

Object Interface

constructor TaskContext (id:number,obj?:object) →
taskcontext : {
_ Context Identifier Number
_ id : number
_ Context Blocking
_ blocked : boolean
_ Transition functions
_ trans : []
_ Scheduling Blocks
_ block : []
_ ATG Object
_ obj :object
_ Timeout Management
_ timeout :number
_ Timer Handler
_ timer :number
_ Current activity
_ state : function()
_}

Object Methods

None

Description

A task context is a virtual process context that is executed by the scheduler. A
task context consists of function blocks, each consisting of nameless functions.
The task context supports blocking. An nameless function of a task block may
block (calling a function setting the blocked property of the task object to false) at
the end of the program flow of the function body. The next function in a task

AFVMDOS - DOS Scheduler: Task Context

43

block (or the next function block) is called only if the task is unblocked (blocked
=false).

Furthermore, a task context can be used to implement Activity-Transition Graphs
(ATG). An ATG object consists of named activity functions and a transition
function array. An ATG object (passed to the TaskContext constructor by the
proc parameter) must have a transitions method returning an array that defines
the activity transitions.

The currently executed activity function is stored in the state property of the task
object.

ATG Object

var atg = function() {
_ var cx,cy,cz,..;
_ this.init = function () {...};
_ this.act1 = function () {...};
_ this.act2 = function () {...};
_ this.act3 = function () {...};
_ ...
_ this.transitions = function () {
_ return [
_ [undefined, this.init, function (con) {return true)],
_ [this.init, this.act1, function (con) {return ε(cx)],
_ [acti , actj , condij], conditional transition
_ [acti , actj], unconditional transition
_ ...
_ }
_}

Each row of the transitions array consists of three elements:

1. The outgoing activity function;
2. The next activity function;
3. The transition function returning a Boolean value. Only if the value is true

and the blocked property of the task object is false than the transition is
executed.

An activity function may block at the end of the program flow (setting the blocked
property of the task object to true).

Examples

AFVMDOS - DOS Scheduler: Task Context

44

var Sch = require('scheduler');
_var rpcserver = function(rpc,pubport, privport) {
_ var main=this;
_ var dying = false;
_ this. privport = privport;
_ this.thread = function (arg) {
_ var thr=this;
_ var rpcio = Rpc.Rpcio();
_

_ this.init = function () {
_ };
_ this.req = function () {
_ rpcio.init();
_ rpcio.operation = Rpc.Operation.GETREQ;
_ rpcio.header.h_port = privport;
_ rpcio.header.h_status = undefined;
_ rpcio.header.h_command = undefined;
_ rpcio.header.h_priv = undefined;
_ rpc.getreq(rpcio); blocking operation
_ };
_ this.service = function () {
_ service request in rpcio
_ };
_ this.reply = function () {
_ rpc.putrep(rpcio);
_ };
_ this.terminate = function () {
_ do something
_ };
_ this.transitions = function () {
_ return [
_ [undefined,init],
_ [init,req],
_ [req,service],
_ [service,reply],
_ [reply,req,function () {return !dying;}],
_ [reply,terminate,function (){return dying;}]
_];
_ };
_ this.context=Sch.TaskContext('myserver'+arg,thr);
_ };
_}

A simple RPC server loop

Authors

Stefan Bosse

See Also

AFVMDOS - DOS Scheduler: Task Context

45

Task Functions
Task Scheduler

AFVMDOS - DOS Scheduler: Task Context

46

DOS Scheduler: Task Scheduler

Module

JavaScript Scheduler

Object Interface

constructor TaskScheduler() →
taskscheduler: {
_ List of all process context objects
_ context:taskcontext []
_ List of all current callback blocks (can be empty)
_ callbacks: function []
_ List of all (timer) handler objects (can be empty)
_ handler:function []
_ Currently executed task context
_ current:taskcontext
_ nextid:number
_ lock:number
_ nested:number
_ If reschedule > 0, the scheduler is executed
_ immediately (ASAP),
_ but without preemption of the current process task.
_ reschedule:number
_}

Object Methods

taskscheduler.add_callback =
_ function(callback:{function|[function,..]})
_taskscheduler.add_timer =
_ function(timeout,name,callback,once)
_taskscheduler.remove_timer =
_ function(name)
_taskscheduler.Add =
_ function(con:taskcontext)
_taskscheduler.Init =
_ function()
_taskscheduler.Schedule =
_ function()
_taskscheduler.Run =
_ function()

AFVMDOS - DOS Scheduler: Task Scheduler

47

Description

The object methods are usually not invoked directly. Instead there is a set of
function operating on the current scheduler object (commonly there is only one
scheduler). The Scheduler module implements virtual processes based on
scheduling blocks (SB) and Activity-Transition graphs (ATG) supporting virtual
process blocking and simulated multi-tasking.

add_callback

Add a callback function executed once in the next scheduler run before any
process (context) activity execution. The callback argument is either a
function, or [function] or [function , arg

1
, arg

2
,.., arg

9
] array.

add_timer

Add a timer handler function (callback) executed once or continuously by the
scheduler. Timers are scheduled before any context processes are
scheduled. A timer handler is executed in its own context. Therefore, the
handler function may create scheduling blocks containing blocking
statements. The timeout is specified in millisecond units and is affected by the
tick resolution of the scheduler (commonly 10 ms).

remove_timer

Remove a timer handler identified by its name.

Examples

var scheduler = Sch.TaskScheduler();
_scheduler.Init();

Authors

Stefan Bosse

See Also

Task Functions
Task Context

AFVMDOS - DOS Scheduler: Task Scheduler

48

DOS Scheduler: Task Functions

Module

JavaScript Scheduler

Functions

function AddTimer(timeout,name,callback,once)
_function Bind(obj:object,method:function) → object
_function Delay(millisec)
_function exec_block_fun(
_ next:{function|[function]|[function,arg1,arg2,..]})
_function FunContext(
_ sched:{taskscheduler|undefined},
_ id,
_ fun,
_ arg?)
_function GetId() → id:number
_function GetCurrent() → taskcontext
_function GetScheduler() → taskscheduler
_function GetTime() → ticks:number
_function IsBlocked(context?) → blocked:boolean
_function ScheduleCallback(callback:function)
_function ScheduleBlock(
_ block,
_ handler:function)
_function ScheduleLoop(
_ cond:function,
_ body:function [],
_ finalize:function [],
_ handler:function)
_function ScheduleNext()
_function SetBlocked(blocked,context?)
_function Suspend(context?)
_function Wakeup(context)

Description

The Scheduler module implements virtual processes based on scheduling blocks
(SB) and Activity-Transition graphs (ATG) supporting virtual process blocking
and simulated multi-tasking.

Scheduling blocks are created with the ScheduleBlock and ScheduleLoop
functions. They add a scheduling sequence to the current context consisting of

AFVMDOS - DOS Scheduler: Task Functions

49

functions scheduled ASAP. The loop block repeats the execution of the loop
body block (body) as long as the iteration function (cond) returns a true value
(checked before the loop body is scheduled). A scheduling block is executed
after the current task is suspended (or ends).

Each scheduling block can define an optional exception handler function
executed if an exception occurred inside a scheduling block. The loop
scheduling block can define an optional finalizing function that is executed after
the last loop iteration.

A function of a scheduling block may add more scheduling blocks or loops,
which are added on the top of the current scheduling block, therefore, executed
after the current function terminates!

AddTimer

Add a timer handler function (callback) executed once or continuously by
the scheduler. Timers are scheduled before any context processes are
scheduled. A timer handler is executed in its own context. Therefore, the
handler function may create scheduling blocks containing blocking
statements. The timeout is specified in millisecond units and is affected by the
tick resolution of the scheduler (commonly 10 ms).

FunContext

Create and add a new functional task context to the given scheduler (if
undefined the current scheduler is used). Inside the function scheduling
blocks and scheduling loops can be used.

GetCurrent

Return current process context object.

GetTime

Get current system time in tick units.

ScheduleCallback

Schedule an asynchronous callback function execution. Must be
preemption-save! I.e., if the program is currently within a scheduling action,
the callback is queued, otherwise it will be executed immediately.

ScheduleNext

Call the scheduler ASAP, eventually with a callback function executed before
any ready process block.

Suspend

AFVMDOS - DOS Scheduler: Task Functions

50

Set the blocked attribute of the current or specific context.

Wakeup

Reset the blocked attribute of a specific context.

Examples

Code
_Code

Authors

Stefan Bosse

See Also

Task Context
Task Scheduler

AFVMDOS - DOS Scheduler: Task Functions

51

DOS Scheduler: Mutex Lock

Module

JavaScript Scheduler

Object Interface

constructor Lock() →
lock: {
_ Mutex Lock State
_ locked: boolean
_ Blocked and waiting processes
_ waiter: taskcontext []
_ Current Owner Process
_ owner: {taskcontext|undefined}
_ }

Object Methods

lock.init=function()
_lock.acquire=function()
_lock.try_acquire=function() → boolean
_lock.release=function()
_lock.is_locked=function() → boolean

Description

Inter-process synchronization and Mutual Exclusion Lock Object that is used to
protect critical code sections. A lock object may only be used (i.e., acquired) in
scheduling blocks (last statement of a block element)!

init

Initialize the Mutex Lock Object.

acquire

Lock the Mutex Lock Object. If the Lock is already acquired by another
process, the current context process is suspend and queued in the waiter list

AFVMDOS - DOS Scheduler: Mutex Lock

52

of the Lock object. If the owner of the Lock releases the Lock, the next waiting
process is scheduled.

try_acquire

Try to acquire a Lock. If the Lock is free, the operation returns a Boolean true
value, otherwise a false value. This operation is non-blocking.

release

Unlock the Mutex Lock Object. If there are waiting processes, schedule the
next process.

Examples

Code
_Code

Authors

Stefan Bosse

See Also

Task Context
Task Scheduler

AFVMDOS - DOS Scheduler: Mutex Lock

53

Index

A
AFL (2)
AFL Code Frames (20)
AFL Communication (31)
AFL Control (15)
AFL Data & Math (8)
AFL Mobility (24)
AFL Overview & Introduction (3)
AFL Process Control (26)

C
Code definition (20)
Code morphing (20)

D
DOS (35)

M
Mutex Lock (52)

R
RPC (36)
RPC Client-Server API (39)
RPCIO (37)
RPC Message Handler (37)

S
Scheduler (42)

T
Task Context (43)
Task Functions (49)
Task Scheduler (47)

54

	Table of Contents
	AFL
	AFL Overview & Introduction
	AFL Data and Math
	AFL Control
	AFL Code Frames
	AFL Mobility
	AFL Process Control
	AFL Communication

	DOS
	RPC
	RPC Message Handler
	RPC Client-Server API

	Scheduler
	Task Context
	Task Scheduler
	Task Functions
	Mutex Lock

	Appendix
	Index

