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Abstract

We present an experimental method to measure velocity gradients caused by dis-
tortions and rotations of arbitrary light scattering surfaces. The method is sensitive,
gauge free and has a fairly high resolution. It it based on the scattering of a coherent
plane light wave at the surface and the evaluation of the intensity pattern of the scat-
tered light in the far field by use of a CCD-camera. By proper choosing the scattering
geometry one can measure definite components of the velocity gradient of the surface.



1 Introduction

If a rough surface is illuminated with coherent light a characteristic random intensity pattern
is observed on a screen placed in an arbitrary distance from the illuminated surface. This
pattern is widely known as speckle pattern. Any changes of the scattering surface generally
produce changes of the speckle pattern. This fact can be used to determine quantitatively
changes of the scattering surface.

Different methods to measure surface distortions have been developed which are based on the
analysis of the pattern changes. Most techniques are based on interferometry [1], holography
[2], or speckle-photography [3]. They allow the simultaneous recording of large areas of the
surface, surface changes are then determined from two successive recordings. By use of an
electronic camera real time measurements are possible.

With the methods just mentioned, which are generally imaging methods, local displacements
of a scattering surface are measured. Quantitative data on distortions or rotations must then
be determined from these data by calculating the difference of displacements at different
points on the surface. The advantage of these methods to give information on large areas
of the surface changes is contrasted by the disadvantage that the accuracy of the obtained
data is reduced by the very fact that three different measurement values must be combined
in order to obtain one value for rotation/distortion: Two displacement values at different
points and the distance of these points.

Hayashi and Kitagawa [4] were able to develop a rather simple technique to measure rotations
of a cylinder with high accuracy. They recorded the motion of the speckle pattern with a
video camera and could from these recordings resolve rotations about 6 - 107°rad. This
method, however, only works reliably if the rotation axis is known, and if no changes of the
scattering surface other than this rotation occur.

Takai and Asakura [5] described a technique based on the evaluation of the cross-correlation
function of two recorded speckle patterns, which allows a rather accurate determination of
surface distortions. They give, however, no information on the accuracy of the measured
displacement values.

More recently, Zhuang et al. [6] measured three-dimensional discplacements with a holospeckle
interferometry method. They resolve displacements in the sub-micrometer region. Again no
infomation on the accuracy of these data is given which prevents a asessment of the accuracy
of distortion data obtain with their method. Furthermore, the method uses photographic
plates which does not allow real time measurements.

The measurement scheme we present in this paper uses a property of the scattered light in
the far field limit by illumination of the object with a coherent plane wave. In this case the
motion of the pattern is entirely independent of a translation of the scattering object and
depends exclusively on its velocity gradient, i.e. on the spatial change of the velocity [7]. It
is obvoius that with the analysis of the scattered light in the far field limit the information
on spatial properties of the scatterer is lost. This means that the measured distortion is an
average over the illuminated area. However, we are going to show that with this method
the obtained distortions can be determined very accurately, and, in principle, all possible
distortion and rotation components can be determined simultaneously.

This method was developed on the basis of a technique to measure velocity gradients in
fluid flow. The theory which it is based on is given in |7, 8]. With the experimental set-up
presented here the motion of the pattern is determined from the spatial cross-correlation



function of two speckle pictures which are recorded at two successive times. For a known
scattering geometry it is then possible to obtain the velocity gradient of the surface motion
from the time lag between the two recordings and the translation distance of the speckle
pattern.

The method described in this paper will be useful in cases where high accuracy and high
spatial resolution is required. It might therefore be interesting for quality control of minia-
turized elements. In cases where only one component of the velocity gradient tensor is of
interest one can measure the pattern velocity with a diode array detector. This reduces
measurment time as well as evaluation time considerably and allows the study of time series
of rotations and/or distortions.



2 Theory

Consider a plane light scattering surface (see figure 1 ). Let us assume that the necessary
roughness of the surface can be described as a statistical ensemble of point-like light scat-
tering centres. On illuminating this surface with a plane wave characterized by the wave
vektor k: a complex scattered light wave results. Any Fourier component of this wave is
focussed by use of the lens L; on a particular point P on a screen B which coincides with
the focal plane of this lens. This secures the pattern on the screen to represent the far field
limit of the scattered light.

The amplitude of an arbitrary scattered wave component with wave vector k, on the screen
is then given by

Ep(G.t) = 3 Bo(7)oi(§)e 00D (1)
J

In this equation o;(q) is the scattering amplitude of the scatterer j, Eo(r) is the amplitude
of the illuminating light wave at the point 7. The scattering vector ¢ is defined by the
relation

7=k —k, (2)
It denotes a definite Fourier component of the scattered light wave.

The surface is now assumed to undergo a distortion with a definite velocity gradient. Then
the velocity of the j-th scattering centre is given by

§(F) = 6 + -7, (3)

Scattering

Observation
plane B

Figure 1: Schematic representation of a light scattering
experiment and the observation of the far field intensity
pattern.

In this equation v, is the overall velocity of the surface and the tensor I is the velocity
gradient tensor with the components

v,

[ = —2% 4
ik 87“k ( )
The tensor [ contains components describing rotation, strain, and shear. The motion of the
surface according to equation (3) results in a motion of the speckle pattern. The velocity of



this motion can be described by the temporal change of the vectors of the Fourier components
ks of the scattered light wave. According to [7] this is given by:

Fo=TT (ki — k). (5)
where the superscript T' denotes the transpose of the tensor. Because of the relation
- 2m
ks = — 6
=2 )

between the wave vector and the wavelength A of the used light source Fourier components
with wave vectors which do not fulfill this equation should have no experimental significance.
Consequently, the wave vectors of all Fourier components which can be observed lie on a
sphere in the wave vector space which is known as Ewald sphere (see figure 2).

Coherence volume

Figure 2: The motion of the wave vector of a scattered
light component due to a distortion of a scattering plane
surface. Explanation see text.

Therefore, it seems to be obvious that only the components of ks perpendicular to ks should
be responsible for the speckle motion. For the set-up shown in figure 1 one then obtains
with simple geometric considerations the velocity v of the speckle pattern:

L

sl

|Fes|

vs = f (7)

However, a more careful analysis of the light scattering shows that one has to take into
account possible correlations of different Fourier components of a light wave produced in
the way considered here, i.e. by scattering of a coherent light wave in a spatially limited
region. For two different Fourier components with wave vectors lgsl and ESQ this correlation
is proportional to the inverse of the extension of the scattering volume in the direction of



Esl - Esg [9]. If the vector E <1 1s considered fixed and the vector E .o variable one can define
a volume enclosed by that surface in the wave vector space where the correlation of the
components k51 and k52 has a fixed value of 1/e of its maximum value, which is achieved for
k52 = ]%1 We call this volume the g-volume of coherence.

The change of the speckle pattern can now be explained in the following way: Consider the
centre of the g-volume of coherence fixed to the wave vector which denotes a particular point
on the observation screen. Then a motion of this wave vector together with its g-volume of
coherence is caused by a distortion of the scattering surface according to equation (5). As
long as the g-volume of coherence cuts the Ewald sphere there is a correlation of the two
patterns. Only if the g-volume of coherence leaves the Ewald sphere a decorrelation of the
pattern appears which is observed as speckle boiling. Consequently, it is then possible to
observe speckle motion even if the k-vector of a definite wave component moves away from
the Ewald sphere, a motion which we call oblique speckle motion.

A plane scattering surface leads to a g-volume of coherence which is infinite in the direction
normal to the plane. This means that regardless of the surface motion there will always
be pure speckle motion, and boiling due to a motion of the coherence volume away from
the Ewald sphere does not occur (For other sources of boiling see below). This behaviour
is illustrated by the well known fact that an arbitrary rotation of an illuminated plane
diffraction grating always shows a motion of the diffracted light spots.

The behaviour just discussed is shown schematically in figure 2. Consider a point on the
screen which is illuminated by the Fourier component with wave vector Esi. Assume that
the distortion of the scattering surface is such that this wave vector lgsl has a certain time
later - according to equation (5) - the value ky>. Then the second pattern appears as if the
wave vector Esl had changed to Esg.

From these considerations it is now possible to deduce an equation for the observed speckle
velocity on the screen on the basis of simple geometric considerations:

— f)‘ - Es'lgs —
s — A ks_—ﬂ '
U - P € (8)

In this equation € is a unit vector normal to the scattering plane pointing towards the
illuminated side. It points of course also along the long axis of the g-volume of coherence.

It should be noted that the vector ¥ of the pattern velocity is a two-dimensional vector in
the plane perpendicular to ks, which can easily be verified by multiplying equation (8) by k| .
Consequently, from a measured pattern velocity only two linear independent components of

Es can be obtained.

The experiments reported in this paper were performed with set-ups in which the normal
of the scattering surface was in the scattering plane, i.e. in the plane defined by the two
vectors k; and k,. This choice is by no means necessary but it renders the evaluation of the
data rather simple. Two special orthogonal components of the pattern velocity, one in the
scattering plane and the other perpendicular to it, can then be expressed in the following
way:
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Vsg = ks - €

2n

In this equation ]%SII is the size of that component of %5 which is parallel to lgs. €, and €, are
orthogonal unit vectors in the observation plane, é, is perpendicular to the scattering plane
and €, is defined by the additional relation €- €, = cos 3, where 3 is the angle between the
vector k, and the scattering surface as shown in figure 2.

It should be noted that the diffraction by a plane surface can more easily be treated than
using the Ewald construction. However, this more general treatment can easily be extended
to scattering of bent surfaces or to not truly two-dimensional ones. In these cases the shape
of g-volume of coherence is different from the one we assumed in our measurements.



3 The cross-correlation technique

The velocity U5 of the speckle motion can be obtained from two pictures of the speckle
pattern recorded with a time lag 7. The patterns seen on the two pictures are shifted
with respect to each other. In addition, speckle boiling leads to a random change in the
pattern and therefore the pictures are not identical if shifted properly. The most reliable
method to calculate the relative shift is to cross-correlate the two pictures and analyse the
two-dimensional cross-correlation function.

It is common practice to calculate spatial correlation functions of digital images with the
help of the fast Fourier transform algorithm [10, 11]. I g(#) and A(7) are two two-dimensional
digital images then their cross-correlation function z(7) is given by

2(7) = FFT™(FFT(g) - FFT(h)) (10)

The fast Fourier transform algorithm intrinsically assumes a periodic continuation of the
pattern which results in a periodicity of the calculated correlation function z(r). This
behaviour restricts the region of the cross-correlation picture, which can be interpreted
unambiguously to an area of N/2 x M/2 pixels around the origin.

An example of a correlation function obtained from two successively recorded speckle pat-
terns and calculated in the way described is shown in figure 3.

Z(X,Y)[rel. units]
40r .
Displacement

3 Central

Y [pixel] o X [pixel]

Figure 3: Example of a cross-correlation function, calcu-
lated from two intensity patterns successively recorded
with a CCD-camera. The shift of the pattern during
the time interval between the two recordings is identical
to the shift of the maximum in the correlation function
relative to the centre point.

Under certain conditions it is possible to determine the position of the maximum with an



accuracy which is much higher than the pixel distance. This can be done if on the one hand
the coherence area (speckle size) is significantly larger than the pixel distance, and on the
other hand if the form of the ideal correlation function is known. The first condition can
easily be met. One has to note, however, that the statistical accuracy of the calculated
correlation function decreases with the number of recorded speckles. The second condition
is not so strict: Generally, the correlation function is symmetric and the region around the
maximum can therefore always be approximated by a general paraboloid.

We fitted the following function with six free parameters to a region around the maximum:
F(z,y,{a;}) = a1 + aax + azy + aszy + asz* + agy® (11)

by determining the minimum of the quantity
A = ZZ(F(CI:UayM7{ai}) _Z(:Cl/ayﬂ))Q (12)
von

where z,,y, are the coordinates of the point (v, 1) in the correlation function. The conditions
for a minimum of A are dA/da; = 0. This leads to a linear system of equations which allows
the determination of the a; and furthermore the calculation of the location (z,,,ym) of the
maximum of F(z,,y,,{a;}). One obtains

2&2@6 — as3dy

Tm = T —

ay — 4dasag

2&3@5 — dqdy

Y = (13)

a? — 4asag

Due to the calculation of the correlation function from a finite set of pixels the result is
far from ideal. Consequently, besides the ‘true’ maximum (the one which results from the
pattern motion) in the correlation function further ‘random’ maxima occur. In addition,
speckle boiling decreases the numerical value of the ‘true’ maximum of the correlation func-
tion. In this way it may happen that the numerical values of the random maxima are of
about the same size as that of the true one. In such cases the correlation function cannot be
interpreted unambiguously. It is therefore necessary to introduce a criterion which allows
to assess the validity of the main maximum. We used two quantities for this validity check:

e The ratio of the heights of two most prominent maxima

SNRpp — Zmain maximum (14)

second maximum

e The ratio of the height of the highest maximum and the root of the variance of the

background
SNRPT — Zmain maximum (15)
eTmS
1 4= T w=2
with €rms = W ZN » (Z($U7 y#) - 2)2
V=T HET S

We used the quantity SN R, for the check of the validity of a measurement because it turned
out to be well suited for that purpose and it can be calculated very fast. The criterion we
used 1is

SNR,, > 1.5 (16)

Only about 1 % of all measurements did not fulfill this criterion and were discarded.



4 Experiments

The general set-up which was used for our experiments is shown schematically in figure 4.

Scattering area Pockels cell He-Ne-Laser
------- ) ]
~ Pol. beam
~ splitter
- Lens Pockels cell
3 H driver
}
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( LPT2
| LPT1 A
| COM1 r

Figure 4: General set-up for the measurement of veloc-
ity gradients of a scattering surface by use of a CCD-
camera.

A 5 mW HeNe-laser is used as coherent light source. A Pockels cell between two polarizers
served as a fast optical shutter to control the illumination of the samples. The high voltage
for the Pockels cell is supplied by a power supply which is controlled by a PC. In this way
it was possible to achieve switching times for the laser light reproducible on a microsecond
scale. The PC also controles the CCD-camera.

The pulsed laser beam reaches the plane surface under examination under an angle «, the
scattered light is observed under an angle 3 with respect to the surface. To make sure
that the scattered light is observed in the far field limit we placed a lens between scattering
surface and camera in such a way that the sensitive area of the camera coincides with the
focal plane of the lens.

The special CCD-camera (PCO Double Flash) allows the recording of two pictures with
a definite time interval which can be chosen between 300 ns and 40 ms. For the double
recordings the camera works in an interlaced mode with 754 x286 pixels for each picture.
External triggers supplied from the PC control the recording of the camera.

The method we describe here was applied to three different distortions/rotations with ve-
locity gradients which were also determined by independent means. We present here the
results of measurements of rotation (figures 6,7,8), strain (figures 10, 11, 12), and bend

(figure 13).
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4.1 Rotation

For these measurements a rotating disc was used. It was set in motion by an electric motor to
which it was connected by a rubber belt. The axis of rotation was positioned in a horizontal
plane (in our notation the x-y plane). A sketch of this scattering geometry is given in figure
5. From equation 3 follows that the speckle motion in this case is perpendicular to the
scattering plane. It is thus possible to measure the gradient component %L;.

Figure 5: The scattering geometry for the rotation
measurements and the definition of the angles «

and (8

l 1 1 1 1
15 2 25 3 35 4 45 5 55

Period T (s)

Figure 6: Comparison of measured and calculated gra-

dient component % as a function of the period of the

rotating scattering surface. The scattering angle 3 was

kept fixed at 30°.

Equation 9 leads to a very simple connection between this gradient component and the
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measured speckle velocity vg,:

v, Vs
Ore _ : (1)
dy  f(cosa —cos )

We choose in our experiments rectangle scattering, i.e. a4 3 = 90°

Figure 6 shows results of measurements of the gradient component % as a function of

the period of revolution of the rotating disc. This period was determined by use of an
opto-coupled interrupter module. The angle § was 30° and consequently o = 60° with an
accuracy of +1°. We furthermore measured the dependence of the velocity of the speckle
pattern on the angle 3, results are shown in the upper part of figure 7.
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Figure 7: Uppper part:Measured speckle velocity v; as
a function of the scattering geometry with o = 90° — 3
Lower part: The signal-to-noise ratio of the calculated
velocities obtained from 10 measurements for each data
point.

The scatter in the determined gradient values is - except for very small 3 - less than 1%,
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which means that reliable gradient values can be obtained from one single measurement
consisting just of one double exposure.

The quality of the determined gradient data can be assessed with the parameters R,, and
R, introduced in the last section. The lower part of figure 7 shows results obtained from
mesurements using paper as a scattering medium, again as a function of 3.

The lower limit for the detection of a rotation using our method depends mainly on the
illuminated area: Let us consider a fixed velocity gradient which results in a fixed speckle
velocity. It is obvious, that the accuracy of the determination of the speckle velocity de-
creases inversely proportional to the speckle size. Now, the speckle size just varies inversely
proportional to the diameter of the scattering area. Therefore, the accuracy of the deter-
mined gradient data increases proportional to the size of the scattering area. It is tacitely
assumed in this rationing that the laser power is sufficient for photon statistics to be neg-
ligible and that furthermore the optical set-up is optimized in such a way that the ratio of
speckle size to pixel distance is kept constant.

For our set-up with a diameter of the illuminated area of about 0.7mm and a detectable
speckle motion of 0.1 pixel distance (see sectiondiscussion) we can resolve a rotation angle

of 0.001°.

An increase of the distance between the rotation axis and the area of illumination leaves the
velocity gradient constant whereas the velocity of the scattering area increases. It is then
possible to study two different aspects of the obtained gradient values:

o Are the experimentally determined gradient values really independent of the linear
velocity of the scattering object?

e Does the boiling of the speckle pattern increase the data scatter significantly?

T T T T T T T

1.4 + calculated — 1
measured —o—

12 1

T - T . -
1 L T a1
SR B SU L BCRr U B B
o T "6 T oo ¢ T
1 P 1

(1]

oW
X
[E=Y

0.8 r 1

0.6 1
L L L L T L L

-5 0 5 10 15 20 25 30 35
Location on Disk [mm]

Figure 8: The measured gradient component 83% as a
function of the distance of the scattering area from the

rotation axis.

These two questions can be answered with help of figure 8. On the one hand no systematic
deviation of the gradient values can be observed. On the other hand there is also no increase
of the scatter for larger velocities of the scattering area. The small amount of scatter shown
in the figure is mainly due to slight variations of the angular velocity of the rotating disc.
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4.2 Strain

The strain measurements were performed with a flat rubber tape (6 x 70 x 1mm?). One
of its ends was fixed, the other was attached to the membrane of a loud-speaker. A saw
tooth voltage controlled by a PC was applied to the loud-speaker which led to a strain of
the rubber nearly linear in time between the jumps. The set-up is shown schematically in
figure 9.  The abolute amount of strain of the rubber tape was determined by measuring

Length L
Elastic /
body .- stretch
q

Figure 9: The scattering geometry for
the strain measurements.
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Figure 10: The speckle velocity caused by streching the
scattering surface as a function of the scattering angle
(. The straight line is calculated from the velocity vy =
3.97% of the end of the tape.

the maximum displacement of the membrane of the loud-speaker with a micrometer screw
and assuming a constant force constant of the rubber.

The motion of the rubber tape was restricted to the scattering plane (the x-y-plane) which
results in a speckle motion in this plane too. The speckle motion is then exclusively deter-
mined by the gradient component %L;. It is not difficult to deduce from equation (9) the
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connection between speckle velocity and velocity gradient for this case:

v, Vg SIN 3

dz  f(cosa — cos f3)

(18)
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Velocity of the driving unitv , [mm/s]

Figure 11: Comparison of the measured gradient com-
ponent %Llf and the one calculated form the velocity vy
of the end of the rubber tape. The scattering angles are
a = 30° and 5 =90° .

Figure 10 shows the results of measurements of the speckle velocity vy, as a function of the
angle # with o+ = 90°. In this case we have speckle motion which we call oblique, because
the motion in g-space is not tangential to the Ewald sphere (c.f. section 2). The straight line
in this figure represents the speckle velocity calculated from the velocity vy of the moving

end of the rubber tape, which was in this case 3.9mm/s. For § = 90° the influence of EaH
vanishes and the speckle motion in g-space is tangential to the Ewald sphere. This leads to
an even simpler relation then the last one:

v, Vas

(19)

dr  fcosa

The dependence of %L; on the velocity vy of the loud-speaker membrane is shown in figure
11. The straight line represents the connection obtained from the focal length of the lens
and the angle o.

Figure 12 shows the dependence of the speckle velocity on the angle o with 3 kept fixed at
90°. Again, the experimental data follow closely the theoretical ones.

The lower limit for a detectable strain with the set-up we used and with a scattering geometry
determined by o« = 80° and 3 = 10° was % = 2-107%, where we again assumed a minimum

detectable speckle motion of 0.1 pixel distance.
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Figure 12: The speckle velocity as a function of the angle
of incidence a. The angle 3 was kept fixed at 90°.

4.3 Bend

For these measurements a flat plastic rod was used. Again, one end was mounted to a fixed
support, the other was attached to the membrane of the loud-speaker rectangular to the
motion direction of the membrane. The bend of the rod was restricted to the scattering
plane. The scattering geometry was essentially identical to the one shown in figure 9, the
only difference being a controlled motion of the free end of the elastic body perpendicular
to its long axis, i.e. in z-direction. Due to the small extension of the end the rod of about
1 mm compared to its length of 750 mm it is admissible to apply the theoretical results of
the bending of an elastic rod. The transverse motion amplitude of the neutral line of the

rod is then given by
3D [ Lx* 23
w(z) = 73 (7 - E) (20)

Here x is the coordinate along the long axis of the rod and D the shift of the end of the
rod. The largest curvature which follows with the given parameters from this equation has
a radius of about 1 m. With a thickness of the rod of 1 mm one can safely neglect the
distortion of its surface. Speckle motion is then caused by a local rotation of the surface
around a vertical axis, and the only non-vanishing elements of the gradient tensors are

Jv, B v, _3dup x?
PR —F(Lf”—?) (21)

where vp is the velocity of the moving end of the rod. The application of equation (9) leads
for the considered case to the following connection between the measured speckle velocity
and the gradient component:

v, Vg Sin 3
9z f(1—sin(28 + a)) (22)

Since according to equation (21) the bend of the rod varies along the long axis we measured
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Figure 13: The gradient component
the location on the bent rod.

vz
dx

the gradient component along this axis. The result of these measurement are shown in

figure 13.

For the bend measurements we performed no analysis of the scatter in the obtained gra-
dient values because such an analysis would be based on approximations which renders it
somewhat dubious.
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5 Discussion

The gradient tensor of a plane consists of six independent components, They describe three
rotations around orthogonal axes, two orthogonal shearing distortions within the plane and
a uniform strain. It is generally possible to measure all of these components with the method
we presented. Of course, a simultaneous measurement requires an experimental set-up which
allows to record three speckle patterns in different directions.

In order to demonstrate the general suitability of the method we performed measurements
on surfaces which underwent rather simple distortions or rotations. We could demonstrate
that the method can be used to measure very small distortions/rotations and that the
measured gradient values are very reliable. It represents no problem to obtain rather high
spatial resolution, we used in our measurements illuminated areas with diameters down to
0.7 mm.

For a successful application of the described method the two following aspects have two be
considered:

o In the experiments described here the influence of speckle boiling could be neglected.
This was due to the following fact: The linear motion of the scattering area was in
all cases so small that the light for the two recordings resulted from almost identical
parts of the surface. In case of large linear velocity and small gradients the situation
will be unfavourable: Either one takes the two recordings with a small time delay
which results in a small relative shift of the two patterns, or - for a larger delay - the
correlation of the two patterns will be small. If we call the in-plane motion velocity
v, and the diameter of the illuminated area parallel to the direction of this velocity d;
we obtain the following condition for the maximum time delay:

ds
T < — (23)

Vs

o A very severe source of speckle boiling represents multiple scattering in the scatter-
ing surface. For instance, measurements with a non-absorbing opaque plastic bar as
scattering medium were not successful because of the very small correlation of the two
speckle patterns even for very small time delays.

From series of measurements where all parameters were kept constant we deduced that the
scatter of a single measurement of the pattern motion to 0.07 pixel distances. This is slightly
less then the value of 0.1 pixel we used to assess the sensitivity of our method.

In order to obtain good results one has to consider two further parameters. This is on the
one hand the ratio of the speckle size to the pixel size. For the fit procedure we performed
this ratio should be at least 6. On the other hand, there should be a minimum number
of recorded speckles, otherwise the scatter in the calculated correlation functions becomes
very large and the main maximum cannot safely be discriminated from random ones. We
found that the number of speckles in the direction of the pattern motion should not be less
than about 40. This is in accordance with the findings of Kriegs et al. [8].
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