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The ConPro programming language, an new enhanced imperative programming language is

mapped to Register-Transfer-Logic using a higher-level-synthesis approach performed by the syn-
thesis tool ConPro. In contrast to other approaches using modified existing software languages

likeC, this language is designed from scratch providing a consistent model for both hardware de-
sign and software programming. The programming model and the language provide parallelism on

control path level using a multi-process model with communicating sequential processes (CSP),
and on data path level using bounded program blocks. Each process is mapped to a Finite-

State-Machine and is executed concurrently. Additionally, program blocks can be parameterized

and can control the synthesis process (scheduling and allocation). Synthesis is based on a non-
iterative, multi-level and constraint selective rule-set based approach, rather than on a traditional

constrained iterative scheduling and allocation approach. Required interprocess communication
is provided by a set of primitives, entirely mapped to hardware, already established in concurrent

softwareprogramming (multi-threading), implemented with an abstract data type object model
and method-based access. It is demonstrated that this synthesis approach is efficient and stable

enough to create complex circuits reaching themillion gates boundary.
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1. INTRODUCTION AND STATE OF THE ART

Today there is an increasing requirement for the development of application-specific
digital circuits, with increasing complexity, too. Traditionally, these circuits are
modelled on hardware behaviour or gate level, but usually the entry point for a
reactive or functional system is the algorithmic level. The Register-Transfer-Logic
(RTL) on architecture and hardware level must be derived from the algorithmic
level, requiring a raise of abstraction of RTL [6].

With increasing complexity, higher abstraction levels are required, moving from
hardware to algorithmic level. Naturally imperative programming languages are
used to implement algorithms on program-controlled machines which process a
sequential stream of data- and control operations. Using this data-processing ar-
chitecture, a higher-level imperative language can be simply mapped to a lower
level imperative language, which is a rule-based mapping, automatically performed
by a software compiler.

But in circuit design, there is neither an existing architecture nor an existing low
level language which can be synthesized directly from a higher level one.

An imperative programming approach provides both abstraction from hardware
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and direct implementation of algorithms, but usually reflects the memory-mapped
von-Neumann computer architecture model.

Another important requirement of a programming language in circuit design (in
contrast to software design) is the ability to have fine-grained control about the
synthesis process, usually transparent.

Using generic memory-mapped languages like C makes RTL hardware synthe-
sis difficult because of transparency of object references (using pointers) prevent-
ing RTL mapping. Additionally, concurrency models are missing in most soft-
ware languages. There are many attempts to use C-like languages, but either
with restrictions, prohibiting anonymous memory access with pointers, or us-
ing a program-controlled (multi-) processor architecture with classical hardware-
software-co-design.

One example is PICO [10], adressing the complete hardware design flow targeting
SoC and customizable or configurable processors, enhanced with custom designed
hardware blocks (accelerators). The RTL level is modelled with C. The program
controlled approach with processor blocks enables software compilation and unre-
stricted C (functions, pointers), but lacks of support of true bit-scaled data objects.

Another example is SPARK [12], a C-to-VHDL high-level framework, currently
with the restrictions of no pointers, no function recursion, and no irregular control-
flow jumps. It is embedded in a traditional hardware-software-co-design flow. It is
based on speculative code motions and loop transformations used for exploration
of concurrency. SPARK generates pure RTL.

Though SystemC provides many features suitable for higher-level-synthesis, it is
primarily used for simulation and verification, and only a subset can be synthesized
to circuits. True bit-scaled data types are supported. Concurrency can be mod-
elled using threaded processes, for example used in Forthes commercial synthesis
tool Cynthesizer [15]. Interprocess communication is modelled on transaction level
(TLM). SystemC provides a high-level-approach still to model hardware behaviour
and structure, rather than algorithms.

Non of these approaches fully satisfy the requierements for pure RTL circuit
design while using C-based languages, especially providing a consistent hardware,
software, and concurrency model. A more dedicated programming language can
close the gap between software and hardware design rules, explained in this arti-
cle. Efficient hardware design requires more knowledge about objects than classical
languages like C can provide, for example true bit-scaled registers, access and im-
plementation models on architecture level (for example singleport versa dualport
RAM blocks, static versa dynamic access synchronization). The generic software
approach only covers the implementation of algorithms, but in hardware design the
synthesized circuit must be connected to and react with the outside world (other
circuits, communication links and many more), thus there must be a programming
model to interface to hardware blocks, consistent with the imperative program-
ming model. Furthermore, there must be a way to easily implement synchroniza-
tion always required in presence of concurrency (at least on control path level). A
multi-process model, established in the software programmer community, provides
a common approach for modelling parallelism, which is the preferred approach to
implement and partition reactive systems on algorithmic level.
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This article focuses on the design of a programming language, the synthesis
methods and architecture models for compiling mainly reactive systems using this
imperative programming language towards RTL level modelled on hardware be-
haviour level (VHDL), reflecting both the algorithmic level using storage objects,
the hardware level using signals, and finally fine-grained synthesis control using
constrained rules.

Summarized the ConPro language and synthesis tool tries to break the limitations
of extendend C-like language approaches for hardware design, while keeping an
intuitive way to implement algorithms by software developers. Concurrency is
modelled explicitly, but can be exploited implicitly, too.

The following section 2 describes the used concurrency process model and inter-
process communication, and section 3 explains basics of the ConPro programming
language. The synthesized RTL architecture with relation to the programming
model is described in section 4, and finally section 5 gives an overview about the
synthesis process and the synthesis rules. Examples and experimental results are
discussed in section 6 and demonstrate the power and suitability of the synthesis
approach and tool for complex circuit designs.

2. MODELLING AND IMPLEMENTING CONCURRENCY

Concurrency can be either modelled explicitly (not transparent) or implicitly (trans-
parent) by the synthesis tool:

Explicit Parallelism

The programming model explicitly describes parallelism which means the pro-
grammer is responsible for modelling concurrency using for example processes
or threads and synchronization primitives. Usually this is the preferred method
for exploration of coarse-grained parallelism, which requires partitioning on al-
gorithmic level, well done by the programmer, rather by the synthesis tool. No
further computational effort must be made by the synthesis tool.

Implicit Parallelism

The compiler tries to explore and derive parallelism from an initially sequential
program specification, described with an imperative language, or using functional
languages with (hidden) inherent concurrency [1]. Mostly, concurrency is derived
from loops using unroll techniques with allocation of resources in parallel, but
concurrency can be explored in basicblocks of data-independent expressions, too.
For example, both expressions x ←x +1 and y ←y + 1 can be scheduled (using
RTL only) in one time step requiring two adders. Usually this is the preferred
method for exploration of fine-grained parallelism on data path level. High com-
putational effort must be made for balancing area and time constraints, usually
done with an iterative approach [4].

There are several advantages of the explicit concurrency model versa the implicit
model derived from initially pure sequential code, found in most extended C-like
approaches [15], especially in the context of reactive systems. Knowledge based
modelling of concurrency can lead to higher degree of concurrency. A multi-process
model with communicating sequential processes provides a concise way, 1. to directly
map imperative programming languages to RTL, and 2. to provide parallelism on
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control path level. The multi-process model requires explicit synchronization, shown
in figure 1. Interaction between processes, mainly access of shared resources, is
request-acknowledge based.

Figure 1: The multi-process model with request-based synchronization

(IPC).

2.1 Process Model and RTL-Architecture

A process φ provides an execution environment consisting of a control path Γ im-
plemented with a Finite-State-Machine (FSM) and a data path ∆ performing cal-
culations, shown in figure 2.

Figure 2: The process implementation on hardware architecture level.

A process φ bounds a sequence of instructions κ={κ1,κ2,...} to this execution
environment. Process instructions on programming level must be executed in the
order they appear (imperative nature). Therefore, the set of program instructions
κ can be directly mapped to a set of states Σ of the FSM, implemented entirely in
RTL.

An algorithm can be partitioned on control path level using a set of N pro-
cesses Φ={φ1,φ2,...,φN}, executing initially independently and concurrently, doing
communictaion, based on the model of communicating sequential processes (CSP)
proposed in [2]. A set of interprocess-communication (IPC) ℑ is required for syn-
chronization. IPC creates control relations between processes: ℑi:φn↔φm. Using
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Higher Level Synthesis Using A Multi-Process-Model � 5

ConPro, it is possible to map multi-processing and interprocess communication to
RTL directly with low resource requirements, shown and proofed in this article.
The ConPro language [5] explained in this article provides concurrency both on
control path level using processes and on data path level using bounded basicblocks,
either specified on programming level or derived automatically by a basicblock sched-
uler, shown in graph 1. Synthesis of RTL from an imperative programming lan-
guage providing the multi-process-model can be superior compared with traditional
hardware-software-co-design using microprocessors because abstract objects, espe-
cially all kind of interprocess-communication, can be implemenetd more efficiently
in hardware than in software, both concering resources and latency.

Graph 1: Different levels of concurrency appearing in the control and
data path.
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The set Φ of processes belong to a module. On module level, a set of global
shared objects α=ℜ∪ℑ can be defined, and on process level, local objects can be
defined. Processes can access both their local and the global objects. These objects
α are either used for data storage (ℜ={registers, variables in RAM blocks}), or for
IPC (ℑ={mutex, semaphore, queue, timer,...}).

The ConPro synthesis tool maps programming level processes to hardware com-
ponents (entities in VHDL terminology), each consisting of 1. a FSM (state register
and state transition network), 2. combinational data path of RTL (data path mul-
tiplexer, demultiplexer, functional units) and 3. transitional data path of RTL
(data path multiplexer, demultiplexer, functional units, and local registers), shown
in figure 2. The process block interface and system interconnect shown in figure
3 require different signals for the control and data path. Shared objects can be
connected to different processes, requiring control signals for atomic access (called
guards). All processes and objects are sourced by one system clock and reset signal,
thus all functional blocks operate synchronously.
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Figure 3: The process block interface and system interconnect.

Processes can be controlled by other processes. A process is treated like an
abstract data type object (ADTO). Process control is established with the ap-
propiate methods. Starting and stopping of processes are non-blocking operations,
thereby calling a process suspends the caller process untill the called (started) pro-
cess reaches its end state.

2.2 Interprocess-Communication

Concurrency on control path level requires synchronization [14]. At least the access
of shared resources must be protected using mutual exclusion locks (mutex). Access
of all global objects is implicitly protected and serialized by a mutex scheduler. IPC
and external communication objects are abstract object types, they can only be
modified and accessed with a defined set of methods υ={υ1,υ2,...}, shown in table
1. Queues and channels can be used in expressions and assignments like any other
data storage object.

IPC Object ℑ Description Methods υ

mutex Mutual Exclusion
Lock

lock, unlock

semaphore Counting

Semaphore

init, up,down

barrier Counting Barrier init, await

event Signal Event init, await,

wakeup

timer Periodic Timer
Event

init, set,start,

stop, await

queue (*) FIFO queue read, write

channel (*) Handshaken
Channel

read, write

Table 1: Available IPC objects. Queues and channels belong both to the

core and abstract object class, too, and can be used within expressions

and assignments (*).
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3. PROGRAMMING LANGUAGE

The ConPro programming language consist of two classes of statements: 1. pro-
cess instructions mapped to FSM/RTL, and 2. type, and object definitions. It is
an imperative programming language with strong type checking. Imperative pro-
grams which describe algorithms that execute sequentially from one statement to
the next, are familiar to most programmers. But beneath algorithmic statements
the programming language must provide some kind of relation to the hardware
circuit synthesized from the programming level. The syntax and semantics of the
programming language is consistently designed and mostly self-explanatory, with-
out cryptic extensions, required in most hardware C-derivates, like Handel-C or
System-C, providing easy access to digital circuit development, also for software
programmer. Additionally there is a requirement to get full programmability of
the design activities themselves, that means of the synthesis process, too [7], im-
plemented here with constrained rules on block level, providing fine-grained control
of the synthesis process. The synthesis process can be parameterized by the pro-
grammer globally or locally on instruction block level, for example scheduling and
allocation.

The set of objects is splitted into two classes: 1. data storage type set ℜ, and
2. abstract data object type set (ADTO) Θ, with a subset of the IPC objects
ℑ. Though it is a traditional imperative programming language, it features true
parallel programming both in control and data path, explicitly modelled by the
programmer.

Processes provide parallelism on control path level, whereby arbitrary nested
bounded blocks inside processes provide parallelism on data path level.

There is an extended interface to connect to external hardware objects.

3.1 Modules, Processes and Circuits

The hierarchical structure of a design is shown in graph 2.

Graph 2: Different design hierarchy levels and object visibilities.
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There are different hierarchy levels:

(1) The structural module (Module-S) level provides composition of behavioural
modules (circuits) to a system-on-chip (SoC) design.

(2) The behavioural module (Module-B) level contains processes and global objects.
A toplevel port defines the interface of the circuit to the outside world.

(3) The process level contains a finit-state-machine, computational units and local
objects.

Definition 1: Definition of processes and process arrays.

◆ object definition ◆
object o1,o2,: object type;

◆ process definition ◆
process pname:

begin

〈process object definitions〉
〈process instructions〉

end [with parameters];

◆ process array definition ◆
array paname: process[N] of

begin

〈process object definitions〉
〈process instructions〉

end [with parameters];

Definition 2: Definition of structural modules.

◆ Structural module definition ◆
module mname:
begin

◆ Import one or more modules ◆
import M,...;

◆ Instantiate components of each module ◆
component C1,C2,...:M;

component ...:...;

◆ Some interconnect between components C1... ◆
type inter connect: {
port C1 o1 WR: output logic[8];

port C1 o1 RD: input logic[8];

port C2 o1 WR: output logic[8];

port C2 o1 RD: input logic[8];
...

};
◆ Instantiate interconnect component ◆
component M c: inter connect := {
C1.TOP.o1 WR,

C1.TOP.o1 RD,

C2.TOP.o1 WR,

C2.TOP.o1 RD,

};
◆ Define some interconnections ◆
M c.C1 o1 WR >> M c.C2 o1 RD;
...

end;
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Higher Level Synthesis Using A Multi-Process-Model � 9

Single processes or an array of processes can be defined using the process en-
vironment, behavioural modules do not require special defintions, and structural
modules can be defined using the module environment, shown in definitions 1 and
2.

A process environment consists of a unique process name, local object definitions
and process instructions. Processes are bound to a behavioural module, containing
additional shared objects.

Behavioural modules are defined immediately by their respective source code file,
which means a source file m.cp defines module M. A SoC is composed of imported
behavioural module instantiations (import and component statement). An internal
interconnect component is instantiated (type and component statement).

A module represents a circuit component with an associated toplevel interface
hardware port. At least the system clock and reset signals are connected. Some
storage objects can be exported with interconnect signals appearing in the toplevel
port. Some abstract objects, for example communication links, have internal input-
output signals routed to the toplevel port. A system-on-chip (SoC) can be com-
posed of behavioural module component instantiations using a structural module
environment. Either all toplevel port signals of each subcomponent or only a subset
is routed to the SoC-toplevel-port. In the latter case, there is an interconnection
component connecting module signals internally (which can be automatically gen-
erated using map instrcutions).

Finally, there is a third kind of subtype of a module: an abstract object module
Module-O. It defines and implements abstract data types and the provided methods
υ

Already mentioned above, processes are handled like ADTOs, too, and can be
started, stopped or synchronously called by other processes using the appropiate
object method: {start,stop,call}. Initially, a process is blocked in his start
state, waiting for a start or call request. There is a main (master) process always
present (like main in C) and started after system reset automatically.

3.2 Object Types

The set of object types α contains storage ℜ, signals ℘, and abstract objects
Θ={ℑ,D,E}: α={ℜ,Θ}. The set D contains data computational objects, for exam-
ple, random generators and DSP units, and the set E contains external communi-
cation objects. Some object definitions are shown in example 1.

3.2.1 Data Storage . Data storage can be implemented with single registers

or with variables sharing one or more memory blocks. Choosing one of these
object types is a contraint for synthesis, not a suggestion (in contrast to software
programming). Registers provide concurrent-read-exclusive-write (CREW) access
behaviour, whereby variables provide only exclusive-read-exclusive-write access be-
haviour (EREW). Both data storage types can be defined locally on process level
or globally on module level. Both registers and variables are true bit-scaled, that
means any width ranging from 1 to 64 bit can be used. In the case of variable stor-
age, the data width of the associated memory block is scaled to the widest object
stored in this block. Fragmented variable objects are supported.

Additionally, queues can be used for intermediate storage and synchronized
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data exchange between processes preserving data order. Simple handshaken data
transfer can be done with channels (buffered or unbuffered without intermediate
register).

Storage objects (like any other objects) can be parameterized on object definition,
for example the kind of scheduler used to serialize concurrent access.

Though there are variables (and arrays) implemented in RAM blocks, there are
no pointer like objects.

3.2.2 Abstract Object Data Types . Beneath data storage objects which can be
used within expressions (read and write access), there are abstract objects, which
can be accessed with a set of methods υ only. Each abstract object belongs to a
module definition and implementation (Module-O), which must be opened before
first object definition. A method is applied to an object using the selector operator
and a list of arguments passed to method parameters (or empty list for pure reactive
methods): Θ.υ(arg1,arg2,...).

An object definition (≡resource allocation) requires the specification of data and
object type, β and α, respectively.

3.2.3 Signals . The signal type ℘ provides access and control on hardware level.
There is no behaviour model behind this signal (in contrast to VHDL), it is just
a connection wire with a specified logical signal level and a direction. The signal
object can be used in expressions and assignments and provides read and write
access like any other storage object, though write access is temporal limited to
the activity window of the assignment. The signal type appears in component
structures, too.

3.3 Data Types

A strong typed expression model is provided. There is a set of core data types:
β={logic, int, bool, char}. Product types, both structures and arrays, can
be defined to provide user-defined types.

A structure contains different named elements with defined data types β. The
structure type must be defined before an object of this type can be defined: type
T: { E1: β1; E2: β2; ...}.

The object type α (register, variable or signal) is associated during object defi-
nition. For each structure element a separate storage element is created.

Array definitions consist of object and cell data type specifications in the form:
array A: α[N] of β. Arrays can be accessed dynamically selected. In the case of
register or object arrays, index-selected multiplexer and demultiplexer are created.
Multi-dimensional storage arrays and arrays of abstract objects including processes
are supported.

Array and structure cells are accessed using the selector operator already intro-
duced for method access: O.E for structures, and O.[I] for arrays.
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Example 1: Examples of different object definitions distinguished by
their object and data type.

1: ◆ Storage Objects ◆
2: reg x,y: int[8]; Defines registers
3: block ram1; Defines a block RAM
4: var a,b,c: int[10] in ram1; Defines variables in RAM
5: array mat1: reg[10] of int[23]; Defines an array
6: array mat2: var[10] of int[8] in ram1;
7: type complex: {
8: real: int[16];
9: imag: int[16];
10: }; Defines a new data type
11: reg zcmp: complex; Defines registers of this type
12: process xyz:
13: begin
14: reg t: int[8]; Local data storage
15: array ta: var[8] of int[8];
16: end; Defines a new process
17: ◆ Abstract Objects ◆
18: open Mutex; Opens Mutex module required below

19: object mu1: mutex; Defines ADTO

3.4 Expressions, and Assignments

Expressions contain data storage objects, constants, and operators. Supported
are all common arithmetic, Boolean (logical), and relational operators. Most of
them are directly mapped to hardware behaviour level (VHDL operators). Initially,
assignments to data storage objects are scheduled in one time step, and the order of
a sequence of assignments is preserved. A sequence of data-independent assignments
can be bound to one time unit either explicitly by the programmer (bounded block),
or implicitly evaluated by the basicblock scheduler (preserving data dependencies,
but violating sequence order). A semicolon (without further scheduling constraints)
schedules an assignment, whereby a colon separated list binds assignments to one
time unit, shown in example 2, e.g. RTL scheduling originally proposed by Barbacci
[13]. A time unit requires at least one clock cycle, but can consume more clock
cycles in the case of access of guarded (shared) objects. Depending on selected
synthesis rules, there are different expression models which can be set on block level
using the parameter: expr={”flat","binary","shared"}. The flat model maps
operators of a (nested) expression 1:1 to hardware blocks (no shared resources), the
binary mode splits nested expressions into single two-operand subexpressions using
temporary registers, improving combinational path delay, and the shared model
provides resource sharing of functional operators using ALUs.

Graph 3 compares the RTL architecture and allocation of different expression
models (flat versa shared) for the instruction sequence x←a+b;y←x+c;z←y+d.
Graph 4 shows flat versa shared expression model with additional shared temporary
register model (enabled with block parameter temp="shared") for one instruction
after scheduling with the reference scheduler: z←a+b+c+d. The binary expression
model with non-shared temporary register model is also shown.
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Graph 3: Comparison of allocation in different expression models: flat
(left) versa shared (right). Instruction sequence: x←a+b;y←x+c;z←y+d.
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Graph 4: Comparison of allocation in different expression models: flat

(left) versa shared (right) and shared temporary register model. In-

struction: z←a+b+c+d. Additionally the binary expression model is
shown in the middle subgraph.
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Example 2: Example of assignments. Lines 3 and 5..9 (parameterized

block) reflect equivalent syntax for concurrent statements with identical

behaviour. Automatic basicblock scheduling is applied to the second

process (parameterized process body block).

1: process p1:
2: begin

3: a←1, b←3, z←x-1; Bounded instruction block
4: ⇔
5: begin
6: a←1;
7: b←3;
8: z←x-1;
9: end with bind; Bounded instruction block, too
10: x←(a+b)*4;
11: end;
12: process p2:
13: begin
14: a←1;
15: b←3;
16: z←x-1;
17: x←(a+b)*4;
18: end with schedule="basicblock";

3.5 Control Statements

There are conditional branches, both Boolean and multivalue branching, condi-
tional, unconditional and counting loops, conditional blocking wait-for statements,
function calls, and exceptions. Exceptions are abstract (symbolic) signals which
can be raised anywhere inside a process, and caught either inside the process where
the signal is raised, or outside from any other process calling this respective pro-
cess. Exceptions are propagated accross process boundaries. Exceptions are the
only structural way to leave a control environment, there is no break, continue or
goto statement. Tables 2 and 3 summarizes available control statements and their
impact on the control path Γ.

The unconditional always-loop is used for request-based server loops (infinite
loop). The wait-for statement is used usually with signals, checking the value of an
expression of signals and optionally applies a statement (usually signal assignments)
until the condition E changes to value true. Because signals are assigned a value
to only as long as the assignment is active, a default value can be specified with
the optional else-branch. Also time delays can be implemented with the wait-for
statement. Is the clock frequency of the system is known, time can be specified in
second units.

3.6 Functions

User-defined functions can be implemented in two different ways: 1. as inlined
not-shared function macros and 2. as shared function blocks. In the first case, the
function call is replaced by all function instructions, and function parameters are
replaced by their respective arguments. In the second case, a function is modelled
using the described process with an additional function control block containing a
function call lock bound to an access scheduler and registers required for passing
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Control Statement Description Γ

if E

then A1

[else A2];

Boolean Conditional

Branch (false-branch

optional)

σ←{σ(A1)|E=true /

σ(A2)|E=false /

σ+|E=false}

match E with

begin

when E1: A1;

when E2: A2;
...

end;

Multi-Value
Conditional Branch

σ←{σ(A1)|E=E1 /

σ(A2)|E=E2 /

...}

Table 2: Available branch statements and impact on state change σ

in control path Γ (σ: actual state, σ+ is next statement, {} is set of

conditional state selections, and / mututal alternation).

Control Statement Description Γ

while E

do A;

always

do A;

Conditional and
unconditional Loop

σ←{σ(A)|E=true /

σ+|E=false}

for i = a to b

do A;

Counting Loop (to or

down-to direction)

σ←{σ(A)|i∈{a,b} /

σ+|i 6∈{a,b}}

waitfor E

[with A1

else A2]

Conditional Delay (E

can be time condition)

σ←{σ|E=false /

σ+|E=true}

try A with

begin

when ε1: A1;

when ε2: A2;
...

end;

Exception Catcher (A

with raise ε

statements)

σ←{σ+|¬raise /

σ(A1)|raise(ε1)

...}

Table 3: Available loop statements and impact on state change σ in con-

trol path Γ (σ: actual state, σ+ is next statement, {} is set of conditional
state selections, and / mututal alternation).

function arguments to parameters and returning results. Only call-by-value argu-
ments of atomic objects can be used. The remaining functionality is provided by
the underlying process model using the call method. Figure 4 shows the system
architecture of a shared function block.
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Figure 4: Shared function blocks are implemented with a process block
and a function call scheduler.

Functions are restricted to non-recursive calls due to a missing stack environment.

3.7 Interface to Hardware-Blocks and the Real World

One main feature mostly missing in actual programming languages used in cir-
cuit design is the ability to interface non-transparent to exisiting hardware blocks,
modelled on hardware behaviour level (VHDL). There are two choices: 1.non-
transparent - using component structures and signals, enabling direct access to
external hardware signals (including the toplevel port of the actual circuit), and 2.
(semi-) transparent - more suitable the External Module Interface (EMI).

Components require a structure type definition with ports specifying the direction
and the type of the port: type T:{ port P: DIR β;...} - and a component can
be instantiated from this type: component C: T;. If the component is exported,
it is part of the port interface of the actual behavioural module.

EMI allows the modelling of devices on hardware behaviour level and access of
these devices using the abstract object interface with user supplied methods. An
EMI module specification consists mainly of these sections: 1. method declara-
tion, 2. method access on hardware behaviour level (hardware implementation of
ConPro ADTO-method call), 3. hardware signal definitions required for access
and implementation, 4. implementation of the abstract object itself, also on hard-
ware behaviour level using a modified subset of VHDL. Example 3 shows some
fragments of a random generator EMI object specification and the method access.
The #access, #signals and #process sections use a modified VHDL language
modelling the hardware level. The #access section defines data and control path
activities of process RTL on hardware level. The #process section implements
hardware blocks (at least the access scheduler and additional functional hardware
blocks) using a modified subset of VHDL.
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Example 3: Example of EMI object specification and access inside a
process using method call.

1: open Random;
2: object rand: random with datawidth=8;
3: process p1:
4: begin

5: rand.read(x);

6: ...
7: end;
8: ====== EMI specification ======

9: #methods
10: begin

11: read(#lhs:logic[$datawidth]);

12: ...
13: end;

14: read: #access
15: begin

16: #data begin
17: RND $O RE <= RND $O GD when $ACC else ’0’;

18: $ARG1 <= RND $O RD when $ACC else 0; end;
19: #control begin

20: wait for RND $O GD = ’0’; end;

21: end;
22: #signals
23: begin
24: signal RND $O d in: std logic;

25: ...
26: end;
27: RANDOM $O SCHED: #process
28: begin

29: if $CLK then begin

30: if $RES then begin

31: RND $O shift <= ’0’;

32: RND $O init <= ’0’; ...

4. RTL ARCHITECTURE

Each high-level process is mapped to a FSM and RTL, already shown in figure 2.
Process instructions are mapped to states of the FSM. Figure 3 showed already the
process system interconnect using signals. Access of objects is request-based and
requires a request signal fed into a mutex-guarded access scheduler, responsible for
serialization of concurrent access by different processes. A guard signal is read by
the process FSM, providing a simple and efficient two-signal handshake (REQ↔ACT).

The scheduler interconnect is shown in graph 5. There are two levels of hand-
shakend synchronization: between each process i and the scheduler: {REQ-i,GD-i},
and between the scheduler and the object implementation block: {ACT,ACK}.

Two different scheduling policies are supported: a simple static priority scheduler
and a dynamic FIFO-based scheduler. The first one assigns each process a static
priority during compile time. The resource is scheduled in priority order. This can
lead to race conditions, whereby one or some processes always get access to the
resource, and others never. The dynamic scheduler stores process identifiers in a
queue and guarantees resource access in the order the requests arrived.

Algorithms 1 and 2 compare both scheduling policies. They can be directly
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Graph 5: Access scheduler block architecture connecting both the port
interface of processes (REQ and GD signals) and the interface of shared

object (hardware) implementation blocks (activation and ackknowledge

signals ACT/ACK and possible external IO connections).

IO-PORT

IO-1 IO-2 IO-3 IO-4

IO-1 IO-2

IMPLEMENTATION BLOCK 1

ACT ACK

IO-1 IO-2

IMPLEMENTATION BLOCK 2

ACT ACK

ACT-1 ACK-1 ACT-2 ACK-2

SCHEDULER

REQ-1 GD-1 REQ-2 GD-2 REQ-N GD-N

REQ GD

PRO-1

REQ GD

PRO-2

REQ GD

PRO-N

mapped to hardware RTL-level wih different resource requirements.
The static scheduler consists of an hierarchical mutual exclusive branch: A

process-i request activates REQ-i, and if the resource is not locked (LOCKED=false),
the request is granted to this process. Concurrent access selects the first process
request in the if-then-else cascade. If the processing of the object request is fin-
ished, then ACK is activated and releases the locked object and releases GD-i for
this respective process indicating that the request is finished.

The dynamic scheduler stores requests in a queue LOCKED (though the access
scheduler is a hierarchical mutual exclusive branch, too): A process-i request acti-
vates REQ-i, and if the resource queue LOCKED is empty or this process is at the head
of the queue, the request is granted to the process in the if-then-else cascade. If the
processing of the request is finished, then ACK is activated and removes the process
from the resource queue and releases GD-i for this respective process indicating
that the request is finished.

Algorithm 1: Static Priority Scheduler. From/to process i:{REQ-i,GD-

i}, from/to shared resource block:{ACT,ACK}.

if REQ-1 ∧ ¬LOCKED then
LOCKED←TRUE;
Raise ACT; Start Service for Process 1

else if REQ-2 ∧ ¬LOCKED then
LOCKED←TRUE;
Raise ACT; Start Service for Process 2

else if ACK ∧ REQ-1 ∧ LOCKED then
Release GD-1;

LOCKED ← FALSE;

else if ACK ∧ REQ-2 ∧ LOCKED then
Release GD-2;

LOCKED ← FALSE;
...
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Local objects are directly implemented in RTL of a process, whereby global
shared objects are implemented in separated hardware blocks, connected to pro-
cesses using signals and to external circuit signals (at least clock and reset). The
hardware architecture of a global object consists of the access scheduler block ex-
plained above, and the implementation blocks of this object, for example a RAM or
communication transmitter. The access scheduler is the interface between the pro-
cesses (accessing this object) and the implementation blocks (processing the object
request).

Algorithm 2: Dynamic Queue Scheduler. From/to process i:{REQ-
i,GD-i}, from/to shared resource block:{ACT,ACK}.

if REQ-1 ∧ LOCKED=[] ∧ ¬PRO-1-LOCKED then
LOCKED ← [PRO-1];

PRO-1-LOCKED ← TRUE;

OWNER←PRO-1;
Raise ACT; Start Service for Process 1

else if REQ-2 ∧ LOCKED=[] ∧ ¬PRO-2-LOCKED then
LOCKED ← [PRO-2];

PRO-2-LOCKED ← TRUE;

OWNER←PRO-2;
Raise ACT; Start Service for Process 2

...

else if REQ-1 ∧ LOCKED 6= [] ∧ ¬PRO-1-LOCKED then
LOCKED ← LOCKED @ [PRO-1]; Append Process 1 to Queue

PRO-1-LOCKED ← TRUE;

else if REQ-2 ∧ LOCKED 6= [] ∧ ¬PRO-2-LOCKED then
LOCKED ← LOCKED @ [PRO-2]; Append Process 2 to Queue

PRO-2-LOCKED ← TRUE;
...

else if REQ-1 ∧ Head(LOCKED)=PRO-1 ∧ OWNER6=PRO-1 then
Raise ACT; Start Service for Process 1

OWNER←PRO-1;
else if REQ-2 ∧ Head(LOCKED)=PRO-2 ∧ OWNER6=PRO-2 then
Raise ACT; Start Service for Process 2

OWNER←PRO-2;
...

else if ACK ∧ Head(LOCKED)=PRO-1 then
Release GD-1;

PRO-1-LOCKED ← FALSE;

OWNER←NONE;
LOCKED ← Tail(LOCKED);

else if ACK ∧ Head(LOCKED)=PRO-2 then
Release GD-2;

PRO-2-LOCKED ← FALSE;

OWNER←NONE;
LOCKED ← Tail(LOCKED);

...

5. SYNTHESIS

Synthesis of RTL circuits from high-level imperative programs can be divided into
different phases [3]:

(1) First, the source code is parsed and analyzed. For each process, an abstract
syntax graph preserving complex statements is built. Global and local objects
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are stored in symbol tables (one globally for module level, and one for each
process level).

First optimiziations are performed on the process instruction graph, for exam-
ple, constant folding and dead object checking, and elimination of those objects
and superfluous statements.

Several program transformations (based on rules and pattern matching) are
performed, for example inference of temporary expressions and registers.

A symbolic source code analysis method, called reference stack scheduler

[4], examines (local) data storage objects and their history in expressions. The
reference stack scheduler analyzes the evaluation of data storage expressions
with an expression stack, one for each object.

The reference stack transforms a sequence of storage assignments with expres-
sion E κ={Θ←E1,Θ←E2,...} of a particular storage object Θ to a sequence
of immutable and unique symbolic variables Θi: {Θ1←E1,Θ2←E2,...}. The
aim is to reduce statements (using backward substitution and constant folding)
and superfluous storage. The reference stack scheduler has a ALAP scheduling
behaviour.

(2) After analysis and optimization on instruction graph level, these complex in-
structions (ranging from expressions to loops) are transformed into a linear list
of µCode instructions, shown in table 4. The µCode level is an intermediate

representation of the program code, used in software compilers, too, though
no architecture-specific assumption is made on this level, except constraints to
the control flow. The µCode can be exported and imported, too. This feature
enables a different entry level for other programming language frontends, for
example, functional languages [1].

This intermediate representation allows more fine-grained optimization, alloca-
tion and scheduling. The transformation from syntax graph to µCode infers
auxilliary instructions and register (suppose for-loops which require initializa-
tion, conditional branching, and loop-counter statements).

Parallelism on data path level is provided by the bind instruction which bind
N instructions to one FSM state (one time unit).

The transformation is based on a set of rules χκ→µ, consisting of default rules
and user selectable rules (constrainted rules), explained later. This is the first
phase of architecture synthesis by replacing the paradigms of the source lan-
guage with paradigms of the target machine, in this case a FSM with statements
mapped to states and expressions mapped to the datapath (RTL). Additionally,
the first phase of allocation is performed here.

Data path concurrency is explored either by user-specified bounded blocks or by
the basicblock scheduler. This scheduler partitions the µCode instructions
into basicblocks. These blocks have only one control path entry at the top and
an one exit at the tail. The instructions of one basicblock (called major block)
are further partitioned into minor blocks (containing at least one instruction or
a bounded block). From these minor blocks data dependency graphs (DDG) are
built. Finally the scheduler selects data-independent instructions from these
DDGs with ASAP behaviour.

(3) After the first synthesis level, the intermediate µCode is mapped to an
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abstract state graph RTL using a set of rules χµ→Γ∆, too, again consist-
ing of default and user-selectable rules. A final conversion step emits VHDL
code. This design choice provides the possibility to add other/new hardware
languages, like Verilog, without changing the main synthesis path.
The rule set determines resource allocation of temporary registers and func-
tional blocks providing different allocation strategies: shared versa non-shared
objects and flat versa shared functional operators and inference of temporary
registers. Shared registers and functional blocks introduce signal selectors in-
side the data path.
RTL is partitioned into a state machine FSM (two hardware blocks, one transi-
tional implementing the state register and one combinational implementing the
state switch network), providing the control path, and the data path (consist-
ing of transitional and combinational hardware blocks, implementing functional
operators, access of global resources and local registers).
Using the default set of rules, each µCode instruction (except those bounded)
is mapped to one state of the FSM requiring one time unit (≥ 1 clock cycle,
depending on object guards). Scheduling is mainly determined by the rule set
χκ→µ, rather by χµ→Γ∆.

Mnemonics Descriptions Effect

move(dst,src) Data transfer ∆:dst←src

expr(dst,op1,op,op2) Data transfer with
binary expression

evaluation

∆:dst←op(op1,op2)

jump(label) Unconditional branch Γ:σ←σ(label)

falsejump(cond,label) Conditional branch Γ:σ(label)|¬cond

bind(n) Bind n following

instructions to a
parallel execution block

{µ1,µ2,...}→σ

fun obj.meth(args) Abstract Object

Method Call

Γ:σ|obj

∆:paramsobj↔args

nop No operation place

holder, mostly a result

of optimization

-

Table 4: µ-Code instructions and theit effect on data- and control path

(∆, Γ).

Though no traditional iterative scheduling and allocation strategies are used, the
non-iterative constraint selective rule based synthesis approach provides inherent
scheduling and allocation with strong impact from different optimizers. Summarized
there are differenet levels of scheduling and allocation:

Reference Stack Scheduler
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Operates on syntax graph level and tries to reduce statementes, functional oper-
ators and storage and has impact on scheduling and allocation.

Basicblock Scheduler

Operates on intermediate µCode level and tries to reduce operational time steps
of statements and has only impact on scheduling.

Expression Scheduler

To meet timing constraints, mainly clock-driven, complex, and nested flat ex-
pressions must be partitioned into subexpressions using temporary registers and
expanded scheduling. This scheduler has impact both on scheduling and alloca-
tion.

Optimizer

Classical constant folding, dead code and object elimination and loop/ branch-
invariant code transformations further reduces time steps and resources (opera-
tors and storage).

Synthesis Rules

But finally the largest impact on scheduling and allocation comes from the set
of synthesis rules χ=χκ→µ∪χµ→Γ∆.

The ConPro synthesis tool was entirely implemented using the functional lan-
guage ML (OCaML, about 70000 source code lines).

5.1 Synthesis Rules

Mapping of 1. process instruction κ to µCode instructions and 2. of µCode to
RTL is done with a set of rules χ. Some rules depend on constraint settings, either
globally set by a compiler setting or more fine-grained on block level using block
parameters, shown in example 4. The j-loop is unrolled using rule χfor−unroll|unroll,
and the process p1 is optimized (scheduled) using the reference stack and basicblock
scheduler. Additionally, expressions are bound to a shared Arithmetic-Logic-Unit
on process level (each process can have its own set of ALUs). Tables 6 and 5 show
some of the synthesis rules and their effect and behaviour.

Using a set of simple mapping synthesis rules without iterative scheduling can
lead to a non-optimized circuit regarding spatial and temproal requirements, but
provide an isomorphic relation between RTL and algorithmic program level, simpli-
fying back-annotation required for verification and simulation.
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Example 4: Synthesis rule constraints on block level.

1: process p1:
2: begin

3: reg x,y,z: int[8];

4: for i = 1 to 10 do
5: begin

6: z ← i * 4;
7: for j = 1 to 5 do

8: begin

9: x ← (x + y) * z;

10: y ← y - 1;

11: end with unroll;

12: end;
13: end with expr="shared" and
14: scheduler="refstack,basicblock";

Synthesis Rule Effect/Behaviour

χfor−loop|default For-loop:

κ:for i = a to b do B →
µ:move(LOOP i,a)

l1: bind(2)

expr($immed.[0],LOOP i,=,b)

falsejump($immed.[0],l2)

jump (l3)

l2: B

expr(LOOP i,LOOP i,+1)

jump (l1)

l3: ...

χfor−loop|unroll Unrolled for-loop:

κ:for i = a to b do B →
µ:∀ i in [a,b] repeat

copy B(substitute LOOP i with
i)

χfun−call|default Function Call:

κ:y←f(x1,x2,..) →

µ:move(REG FUN f x1,x1)

move(REG FUN f x2,x2)...

fun LOCK FUN f.lock ()

fun FUN f.call ()

move(y,REG FUN f res)

fun LOCK FUN f.unlock ()

Table 5: Some µ-Code synthesis rules and their synthesis effect (control

models).
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Synthesis Rule Effect/Behaviour

χexpr|expr=flat Expression with flat model:

κ:(x1 op1 (x2 op2 x3) →

µ:bind(2)

expr($immed.[0],x2,op2,x3)

expr(res,x1,op1,$immed.[0])

χexpr|expr=ALU Expression with shared model

κ:(x1 op1 (x2 op2 x3) →

µ:bind(2)

expr($tmp.[0],x2,op2:ALU,x3)

expr(res,x1,op1:ALU,$tmp.[0])

Table 6: Some µ-Code synthesis rules and their synthesis effect (expres-
sion models).

6. EXAMPLES AND EXPERIMENTAL RESULTS

Example 5 shows a complete ConPro design. It is the implementation of the dining
philosophers problem using semaphores. Five philosophers sit around a circular
table. Each philosopher spends his life alternately thinking and eating. In the
center of the table is a large platter of spaghetti. Each philosopher needs two forks
two eat. But there are only five forks for all. One fork is placed between each pair
of philosophers, and they agree that each will use only the forks to the immeadiate
left and right [14], here implemented with a semaphore array fork.

The read ports of the shared registers eating and thinking are exported to the
module toplevel port. The design consists of seven processes. The philosophers
are implemented with the process array philosopher. Gate-level synthesis with a
standard cell technology [16] results in a circuit with 3919 gates, 235 D-flip-flops,
and an estimated longest combinational path of 17 ns (55 MHz maximal clock
frequency).

1: open Core;

2: open Process;

3: open Semaphore;
4: open System;

5: open Event;

6: object sys: system;
7: sys.simu cycles (500);

8: object ev: event;

9: array eating,thinking: reg[5] of logic;

10: export eating,thinking;

11:

12: array fork: object semaphore[5] with depth=8 and scheduler="fifo";

13:

14: process init:

15: begin

16: for i = 0 to 4 do
17: fork.[i].init (1);

18: ev.init ();

19: end;
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20:

21: function eat(n):

22: begin

23: begin
24: eating.[n] ← 1;

25: thinking.[n] ← 0;

26: end with bind;
27: wait for 5;

28: begin

29: eating.[n] ← 0;

30: thinking.[n] ← 1;

31: end with bind;

32: end with inline;

33: array philosopher: process[5] of
34: begin

35: if # < 4 then
36: begin

37: ev.await ();

38: always do

39: begin
40: -- get left fork then right

41: fork.[#].down ();
42: fork.[#+1].down ();
43: eat (#);
44: fork.[#].up ();
45: fork.[#+1].up ();
46: end;

47: end
48: else
49: begin

50: always do

51: begin

52: -- get right fork then left

53: fork.[4].down ();
54: fork.[0].down ();

55: eat (#);

56: fork.[4].up ();
57: fork.[0].up ();

58: end;

59: end;

60: end;

61:

62: process main:

63: begin

64: init.call ();

65: for i = 0 to 4 do
66: begin
67: philosopher.[i].start ();

68: end;

69: ev.wakeup ();

70: end;

Example 5: A complete ConPro example: the dininig philosopher prob-
lem.
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Example 6: Different expression models EXPR={flat,binary,shared} are

examined in the process p1. First for an addition operation (sum in

process p1), and second for a multiplacation (prod in process p2).

1: process p1:
2: begin

3: reg sum,n: int[16];
4: sum <- d,n <- 2;

5: for i = 0 to 15 do
6: begin
7: sum ← sum + i + n;

8: n ← n + 2;

9: end with unroll;

10: d ← sum;
11: end with expr=EXPR;

12:

13: process p2:
14: begin

15: reg prod,n: int[16];

16: prod ← d, n ← 2;

17: for i = 1 to 16 do
18: begin

19: prod ← prod * i * n;

20: n ← n * 2;

21: end with unroll;
22: d ← prod;

23: end with expr=EXPR;

Different expression models are examined in example 6. Table 7 summarizes the
synthesis results, using 1. standard cell target technology and gate-level synthesis
(Mentor Graphics Leonardo Spectrum), and 2. Xilinx FPGA synthesis (ISE 9.2,
Spartan III-1000 FPGA). Both addition and multiplication operations are evalu-
ated. Sharing resources is not always usefull, which can be seen in the first example
using adders (16 bit data width). In the first example inferring only adders, the
additional multiplexer and demultiplexer using the shared expression and alloca-
tion model require more resources than the non-shared resource model. Especially
if FPGA technolgy is used with embedded arithmetic units (DSP). Most expensive
is the binary expression model. In contrast to the second example with multipli-
ers. Here, the shared model decreases the required resources of about five times, in
both target technologies (note: FPGA synthesis could not map all multipliers to
embedded DSP blocks).
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Expression Model Gates, Flip-Flops, Path Delay

+,expr=flat, SXLIB 1098, 59, 17.0 ns

+,expr=binary, SXLIB 1742, 94, 13.5 ns

+,expr=shared, SXLIB 1278, 65, 14.9 ns

+,expr=flat, FPGA 1386, 57, 10.1 ns

+,expr=binary, FPGA 3270, 103, 11.1 ns

+,expr=shared, FPGA 2284, 89, 12.9 ns

*,expr=flat, SXLIB 20944, 140, 31.6 ns

*,expr=binary, SXLIB 8173, 138, 29.9 ns

*,expr=shared, SXLIB 4570, 94, 34.7 ns

*,expr=flat, FPGA 27220, 119, 21.8 ns

*,expr=binary, FPGA 11252, 103, 15.5 ns

*,expr=shared, FPGA 3879, 84, 22.9 ns

Table 7: Synthesis results for different expression models of example 6.

Several different complex designs reaching the million gates limit were imple-
mented and synthesized successfully by the ConPro design framework. One main
area of application is robotics which requires complex reactive control systems
for robot joint actuators and communication [8][9]. Table 8 shows some selected
projects with a short description and collected information about synthesis. All
designs use a Xilinx Spartan-III-1000 FPGA as target technology. Gatelevel syn-
thesis were performed by Xilinx ISE 9.2 software. The total high-level-synthesis
time never exceeds 60 seconds on a Sun BLADE 2500 (2 x UltraSparc III, 1.6GHz)
machine, whereby the gate-level synthesis reaches 20 minutes.

There is a ratio of about 1:10 of high-level source code lines to synthesized VHDL.
The gatelevel synthesis tool estimates low longest-path delays resulting in high max-
imal clock frequencies. This value can be treated as a relative estimation factor for
the evaluation of the quality of RTL design and architecture. Compared with
generic microprocessor implementations in FPGAs usually achieving clock frequen-
cies in the range of 50-100 MHz using hand-coded designs (for example [11] reported
≥ 50 MHz, Areoflex Gaisler [http://www.gaisler.com] reported 80 MHz for Leon-2
core using Xilinx Spartan/Virtex FPGAs, own results for Xilinx Spartan-III-1000
device-synthesis leads to 67 MHz prediciton), the automatic synthesized RTL de-
sign (without inference of special target technology mappings, magic blocks and
vendor IP cores!) is comparable or better in performance. The RTL design in-
corporates all storage, whereby a microprocesser design exclude storage (data and
code). Thus it is difficult to compare pure hardware and pure software designs
implementing the same algorithm (program), concerning execution time and re-
source requirements. Other C-like higher-level-synthesis tools like SPARK [12] do
not support concurrency to be modelled explicitly, and hence can not be used for
comparing design issues because different algorithms (in terms of parallelism and
partitioning concurrent tasks) must be used.
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Project Description Statistics

SLP: Simple Link Protocol

Stack Communication Node

CPL=900,VHDL=10933

OBJ=93,PRO=12,RL=52

RG=14, ST=17s

GT=696237, FF=1805,

CLK=89 MHz

µJTAG: embedded JTAG

TAP controller with µCode

interpreter and communication

CPL=1563,VHDL=13650

OBJ=206,PRO=12,RL=40

RG=51, ST=19s

GT=384878, FF=1967,

CLK=84 MHz

ASGUARD: Robot Joint
Controller with PID controller

and communication [8]

CPL=1211,VHDL=26685

OBJ=233,PRO=22,RL=91

RG=30, ST=49s

GT=204911, FF=2281,

CLK=71.6 MHz

Table 8: Some selected System-On-Chip projects with source code and

synthesis statistics (CPL: total ConPro source code lines,VHL: synthe-

sized VHDL lines, OBJ: number of object blocks ,PRO: numebr of pro-
cesses, RL: local register, RG: global shared register, ST=synthesis time
on UltraSParc III 1.6GHz, GT/FF=Synthesized equivalent Gate Count
and D-flip-flops, estimated by Xilinx ISE 9.2 on Xilinx Spartan III-1000,

CLK=max. clock frequency estimated by ISE 9.2).

Example 7 shows a simple function calculating the parity of a bit vector imple-
mented with a for-loop. Table 9 shows synthesis results obtained by the ConPro
compiler and finally using gatelevel synthesis with a standard cell target technol-
ogy (SXLIB [16] and Mentor Graphics Leonardo Spectrum). Different synthesis
rule settings both concerning the scheduling strategy (or more precisely: optimiza-
tion) and the for-loop synthesis rule (unrolled or not unrolled). Note: since the
reference stack scheduler may only handle local objects, the function arguments
(implemented with global registers) must be copied to local registers, though usu-
ally not required.

The default synthesis rules lead to highest computation time (196 TU=clock
cycles), medium resource coverage, and suprisingly highest longest combinational
path estimated by the gatelevel tool. Basicblock scheduling reduces the compu-
tation time (130 TU) without changing resource coverage and longest path. The
unrolled loop requires much lesser computational time (67 TU), but nearly highest
resource coverage. Using the reference stack and basicblock scheduler results in
lowest computational time, lowest resource coverage, and path delay.
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Example 7: ConPro source code for the parity calculator and synthesis
evaluation under different constraints (scheduling parameters).

1: const WIDTH: value := 64;
2: reg d: logic[WIDTH];

3: function parity (x: logic[WIDTH])
4: return (p: logic):

5: begin

6: reg pl: logic;
7: reg xl: logic[WIDTH];

8: xl ← x;
9: pl ← 0;

10: for i = 0 to WIDTH-1 do
11: begin

12: pl ← pl lxor xl[i];

13: end <with BLOCK PARAMETER>;
14: p ← pl;

15: end <with SCHEDULE PARAMETER>;

16:

17: process main:
18: begin

19: reg p: logic;

20: d ← 0x12345670;
21: p ← parity(d);

22: end;

Block Parameter Time, Gates, Register, Path

Delay

schedule=default 196 TU, 972, 82 , 5.7 ns

schedule=basicblock 130 TU, 937, 79, 5.3 ns

schedule=default& unroll 67 TU, 1525, 138, 4.1 ns

schedule=refstack& unroll 3 TU, 879, 69, 3.4 ns

schedule=basicblock& unroll 65 TU, 1538, 137, 4.1 ns

schedule=refstack, basicblock

& unroll

2 TU, 853, 66, 3.4 ns

Table 9: Synthesis results of parity calculator with different for-

loop block and schedule parameters. Shown are required time units,

gates, and registers for the function implementation using standard cell
gatelevel synthesis. The path delay, gate & register count are calculated

by the gatelevel synthesis tool, the time values by the ConPro synthesis

tool.

7. CONCLUSION AND OUTLOOK

In this paper, a new high-level language and a synthesis compiler ConPro used for
circuit design was presented, closing the gap between software and hardware level.
The programming language provides an algorithmic entry level with additional
features for synthesis control concerning scheduling and allocation. True bit-scaled
data types are supported. The programming model is based on a multi-process
architecture with interprocess-communication primitives, providing coarse-grained
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parallelism explicitly modelled. Fine-grained parallelism is supported on data path
level and can be explored by the synthesis tool, too.

The synthesis process maps process instructions to states of a FSM and RTL
on hardware behaviour level with good performance and resource coverage, us-
ing a selectable set of rules. VLSI design with about 1M gates and beyond can
be designed. Synthesis results show good performance of the compiler and good
matching results to target technologies like FPGAs. Though no iterative scheduling
and allocation is performed, the optimizer can reach well optimized circuit designs.
Main application fields are reactive systems, rather functional and pipelined sys-
tems. High-level-synthesis performed by the ConPro tool is faster than gate-level
synthesis of about one order.

In the future, pipelining of the data path must be supported to provide high
performance synthesis of functional units.

Actually the rule set χ is static and built in the synthesis tool. In the future,
this rule set should be separated from the compiler and be extendable using a rule
definition language. This approach enables dynamic modification of rules as part
of the design process (having different rules for different designs).
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