
Conpro2
High-Level Synthesis Framework

Stefan Bosse

Programming of Concurrent Hard-
ware and Software Systems

System-On-Chip Design

1

Introduction . 3
Processes and Process Management . 11
Object and Data Types . 19
External Module Interface EMI. 35
March 29, 2011 17:34Table of Content

2

March 29, 2011 17:34 Table of Content

Introduction

Design of Embedded Systems and programming of concurrent Hardware and Sofware
Systems using a Multi-process model and Interprocess communication

Table of Content . 3
Summary. 3
Introduction and Overview . 4
System-On-Chip Design Using a Behavioural Model Approach and High-Level Synthesis . . . 5
Bibliography . 9

1. Summary

Embedded Systems used for control and data processing, for example in Cyber-
Physical-Systems (CPS), perform the monitoring and control of complex physical
processes using applications running on dedicated execution platforms in a re-
source-constrained manner. Application-specific System-On-Chip (SoC) designs
providing the execution platform have advantages compared with traditionally
used program-controlled multi-processor architectures.
SoC designs can be modelled on structural and behavioural level. The behav-
ioural level is generally a more sophisticated modelling level. In the context of
CPS, these are mainly reactive systems with dominant and complex control
paths. The major contribution to concurrency appears on control path level.
A new SoC design methodology is presented using the behavioural hardware
compiler ConPro providing an imperative programming model based on concur-
rently communicating sequential processes (CSP) with an extensive set of inter-
process-communication primitives and guarded atomic actions. The behavioural
programming level describes the behaviour of the full design interacting with the
environment using processes and (shared) objects. The programming language
and the compiler-based synthesis process enables the design of constrained
power- and resource-aware embedded systems with pure Register-Transfer-Log-
ic efficiently mapped to FPGA and ASIC technologies. Concurrency is modelled
explicitly on control- and datapath level. Additionally, concurrency on datapath
level can be explored and optimized automatically by different schedulers.
The CSP programming model can be synthesized to different levels, not only
used for hardware circuit synthesis: software models (C, ML), intermediate
μCode, RTL state level, and finally VHDL. A common source on programming
level for both hardware and software implementations with identical functional be-
haviour is used. The necessary abstraction of hardware blocks and IPC is per-

4

formed by using an object-orientated model layer, part of the programming model.
The presented design methodology has the benefit of high modularity, freedom
of choice of target technologies, and system architecture. Algorithms can be well
matched to different suitable execution platforms and implementation technolo-
gies, using a unique programming model, providing a balance of concurrency and
resource complexity.

2. Introduction and Overview

Embedded Systems used for control, for example in Cyber-Physical-Systems
(CPS), perform the monitoring and control of complex physical processes using
applications running on dedicated execution platforms in a resource-constrained
manner. System-On-Chip designs are preferred for high miniaturization and low-
power applications. Traditionally, program-controlled multi-processor architec-
tures are used to provide the execution platform, but application-specific digital
logic gains more importance.
There are two different ways to model and implement System-on-Chip-Designs
(SoC) used in those embedded systems: using 1. a structural and/or 2. a be-
havioural level. The structural level decomposes a SoC into independent sub-
modules - processor cores (or data processing units in general), memories, and
peripherials - interacting with each other using centralized or distributed networks
and communication protocols. The behavioural level usually describes the behav-
iour of the full design interacting with the environment without detailed assump-
tions about system architecture, generally a more sophisticated modelling level.
In the context of CPS, these are mainly reactive systems with dominant and com-
plex control paths. The major contribution to concurrency appears on control path
level, which can be explicitly modelled on algorithmic level.
A new SoC-design methodology is presented using the behavioural hardware
compiler ConPro providing an imperative programming model based on concur-
rently communicating sequential processes (CSP) [5] and guarded atomic ac-
tions [4] with an extensive set of interprocess-communication primitives. The
programming language and the compiler-based synthesis flow enables the de-
sign of application-specific constrained power- and resource-aware embedded
systems on Register-Transfer-Level efficiently mapped to FPGA and ASIC tech-
nologies. Concurrency is modelled explicitly on control- and datapath level. Addi-
tionally, concurrency on data path level can be explored and optimized
automatically by different schedulers.
Hardware blocks (including IPC and externally modelled) can be accessed trans-
parently from programming level with a generic object-orientated approach.
The CSP programming model can be synthesized to different other levels, not
only used for hardware circuit synthesis: software models (C, ML), intermediate
μCode, RT state level, and finally to hardware behaviour level, e.g. VHDL. A
common source for both hardware and software implementation with identical
March 29, 2011 17:34 Introduction - Introduction and Overview

5

functional behaviour matches different embedded architecture levels and enables
code reuse. The Metalanguage ML (OCaML) is well suited for simulation and test-
pattern based functional model checking.
Why a new language? Traditional programming languages like C are designed for
sequential programming only, and concurrency is present to some extent through
the use of libraries [1]. Concurrency should be controlled by first-class language
constructs [3] to enable optimized design of massive parallel systems and hard-
ware synthesis. There are several examples of new designed languages for con-
current programming, like SystemJ [1] or X10 [3]. C-like languages used for
hardware-synthesis are wide spread, but are not fully suitable for RTL synthesis
due to strong dependency on memory model (pointers) and the missing concur-
rency model.
What is novel compared with other high-level-synthesis approaches? One lan-
guage targets both concurrent software and hardware programming, the hard-
ware synthesis process can be fine-grained controlled on programming level
using parameterized blocks. A traditional compiler approach with μCode inter-
meadiate representation (without loss of concurrency) enables fast and optimized
synthesis. Object-orientated access of hardware blocks using the External Mod-
ule Interface (EMI) - part of the programming model - provides a modern and
transparent interface for both software and hardware designers, closing the gap
between software and hardware models. The extended set of IPC primitives en-
ables concurrent programming of complex control and data processing systems.

3. System-On-Chip Design Using a Behavioural Model
Approach and High-Level Synthesis

Concurrency has great impact on system and data processing behaviour con-
cerning latency, data throughput, and power consumption. Streaming and func-
tional data processing requires fine-grained concurrency (on data path level),
however, reactive control systems (for example communication) require coarse-
grained concurrency (on control path level).
The structural level decomposes a SoC into independent submodules interact-
ing with each other using centralized or distributed networks and communication
protocols, mainly program-controlled multi-processor architectures.
The behavioural level usually describes the functional behaviour of the full de-
sign interacting with the environment. Most applications and data processing are
modelled on algorithmic behavioural level using some kind of imperative pro-
gramming language.
The ConPro high-level synthesis of SoC designs uses a behavioural imperative
programming language with a compiler-based synthesis approach from algorith-
mic programming level to register-transfer level mappable directly to digital logic
[2].
Concurrency is modelled explicitly on control path level with processes executing
March 29, 2011 17:34Introduction - System-On-Chip Design Using a Behavioural Model
Approach and High-Level Synthesis

6

a set of instructions sequentially, initially independent of any other process. Inter-
process-communication (IPC) provides synchronization with different objects
(mutex, semaphore, event, timer) and data exchange between processes using
queues or channels, based on the Communicating Sequential Processes
(CSP, Hoare 1985) model.
There are local and global resources (storage, IPC) , accessed by one process
and several processes, respective. Concurrent access of global resources is au-
tomatically guarded by a mutex scheduler, serializing access, and providing
atomic access without conflicts.
There are process and top-level instructions. Top-level instructions are evaluated
during synthesis (configuration). Process instructions are transformed and
mapped to states of a clock-synchronous finite-state-machine (FSM) controlling
the process RTL data path temporally and spatially, shown in figure 1.
More fine-grained concurrency is provided on data path level using bounded
blocks executing several instructions (only data path, e.g. data assignments) in
one time unit. Block level parallelism can be enabled explicitly or implicitly ex-
plored by a basicblock scheduler [2].
The complete synthesis process can be fine-grained parameterized on program-
ming block level, for example selection of different expression models (allocation)
or activation of specific schedulers and optimizers.

 Figure 1. Mapping of the proposed multi-process model to FSM-RTL architecture using high-
level synthesis.

Hardware blocks, modelled on hardware level (VHDL), can be accessed from the
programming level using an object-orientated programming approach with meth-

F

RTL

F

1

2

FSM

Process

queue q: int;
process a:
begin
 reg x: int;
 x <- 0;
 for i = 1 to 10
 do
 x <- x + q;
 done;
end;

F

RTL

F

1

2

FSM

Process

process b:
begin
 reg y: int;
 y <- 0;
 for i = 1 to 10
 do
 q <- y+i;
 y <- y*2;
 done;
end;
March 29, 2011 17:34 Introduction - System-On-Chip Design Using a Behavioural Model
Approach and High-Level Synthesis

7

ods. All hardware blocks, including IPC, are treated like abstract data type objects
(ADTO) with a defined set of methods accessible on process level and top level
(only applicable with configuration methods, for example setting the time interval
of a timer). The bridge between the hardware and software model is provided by
the External Module Interface (EMI).
The relationship of the proposed programming and execution model and the re-
quired building blocks of Conpro (programming language and synthesis) are illus-
trated in figure 2.

 Figure 2. Building blocks: from the programming model to hardware using high-level synthe-
sis.

The programming language supports different types of storage objects (single
registers and variables in shared RAM blocks, true bit-scaled), different aggrega-

Communicating
Sequential
Processes

Instruction
Processing

Concurrency
Parallelism

Imperative &
Sequential

Multi-
Processing

Interprocess-
Communication

Behavioural Model

ConPro

Implementation &
Designflow

Imperative Constrained
Parallel Programming Language

Hardware
Compiler

Software
Compiler

Analysis
Optimization

Hardware
Model

Software
Model

Synthesis

Data&
Control Path RTLVHDL μCode C ML

SoC
Hardware

Processor
Software

Algorithm Algorithmic Level
Programming Language

External Module
Interface

EMI

Intermediate
Representation

Process Types ObjectsStatement

Data Control Abstract

Guarded
Atomic
Actions

Computation &
Execution Model

Building
Blocks
March 29, 2011 17:34Introduction - System-On-Chip Design Using a Behavioural Model
Approach and High-Level Synthesis

8

tion types (array, structure) and abstract objects. Programming statements can
modify data (expressions, assignments) or have impact on the control flow (con-
ditional and counting loops, conditional branches, concurrent multi-value selec-
tion).
Figure 3 gives an overview of the design flow guiding through different levels pro-
vided by the ConPro framework. After the source code is parsed and transformed
into an abstract syntax tree (AST), there are different allocation, scheduling, and
optimization stages. The reference stack scheduler performs symbolic analysis
on AST level and resolves constant and storage propagation, conditional assign-
ments and multiple assignments. This ALAP scheduler has impact on scheduling
and allocation done by optimization. The intermediate μCode representation was
choosen for simplified RTL synthesis and optimization (synthesis pass I).
The basicblock scheduler partitions the program code into blocks without control
side entries containing only data assignments (basicblocks). For each basicblock
a data-dependency analysis is performed. Independent data assignments can be
bound to the same time unit. These optimizing schedulers can be activated or de-
activated on block level. Finally in synthesis pass III the RTL is synthesized and
mapped to VHDL. Alternatively, after pass I (AST) or II (μCode) software output
with same functional and simulated/scheduled concurrency behaviour can be
compiled.

 Figure 3. SoC design flow using the high-level synthesis framework ConPro providing map-
ping of a parallel programming model to RTL hardware and alternatively to software.

Parser

SoC
Hardware

Processor
Software

Intermediate
Representation

Analysis
ConPro
Source Analysis

AST
Transformation

AST

Optimization

AST

Synthesis Pass 1μCode Synthesis
AST

μCode
Transformation

Optimization

μCode

Referenzstack
Scheduler

Basicblock
Scheduler Synthesis Pass 2Expression

SchedulerμCode

μCode

EMI
Source

Parser Analysis
μCode
Source

FSM&Datapath
Synthesis

Rules

Rules

Rules

VHDL
Synthesis

Toolchain
Script Generator

Synthesis Pass 3

Rules
Code

Templates

Constraints

μCode
Source

C/ML
Synthesis

Rules

Allocation

Scheduling
March 29, 2011 17:34 Introduction - System-On-Chip Design Using a Behavioural Model
Approach and High-Level Synthesis

9

The synthesis flow

 Equation 1.

is defined by a set of rules χ. Each set consists of subsets which can be selected
by parameter settings (for example scheduling like loop unrolling, or different al-
location rules) on block level.
Example 1 shows a concurrent computation system performing data modification
by an array of four processes sum[0..3]. They access the global register x.
Though the access of x is atomic and guarded, the expression in line 9 is it not,
thus a mutual exclusion lock m is required. A master process someother controls
the system and waits for completion of all sum processes using a semaphore. A
timer t performs group synchronization (here just for fun). The synthesis is con-
trolled on block level with different settings (loop unrolling in line 10, scheduling in
line 11, object constraints in lines 2 & 3). Line 14 creates a bounded block for data
assignments to registers a and b (using a colon instead of a semicolon).

 Example 1. Parts of a ConPro source code example.

1 open Mutex; open Timer; open Process; ...
2 object m: mutex with scheduler=”fifo”;
3 object t: timer; t.time(1 millisec);
4 object s: semaphore;
5 reg x: int[12];
6 array sum: process[4] of begin
7 for i = 1 to 10 do begin
8 t.await ();
9 m.lock(); x <- x + 1; m.unlock ()
10 end with unroll=true; s.up ();
11 end with schedule=”basicblock”;
12 process someother: begin
13 reg a,b: int[10];
14 a <- x+1, b <- x-1; x <- a;
15 t.init (); t.start (); s.init(0);
16 for i = 0 to 3 do sum.[i].start();
17 for i = 1 to 4 do s.down();
18 end;

Objects (like IPC) belong to a module, which have to be opened first (line 1). Each
module is defined by a set of EMI implementation files providing all necessary in-
formations about objects of this module (like method declarations, object access

χ CP : AST μCODE RTL VHDL→ →→ →
March 29, 2011 17:34Introduction - System-On-Chip Design Using a Behavioural Model
Approach and High-Level Synthesis

10

and implementation on hardware level).

4. Bibliography

[1] Malik, Avinash and Salcic, Zoran and Roop, Partha S., SystemJ com-
pilation using the tandem virtual machine approach, ACM Trans. Des.
Autom. Electron. Syst., Vol 14, (2009)

[2] S. Bosse, ConPro: Rule-Based Mapping of an Imperative Program-
ming Language to RTL for Higher-Level-Synthesis Using Communi-
cating Sequential Processes, Technical Paper, BSSLAB, Bremen,
2009

[3] Charles, Philippe et al., X10: an object-oriented approach to non-uni-
form cluster computing, OOPSLA ’05: Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications (2005)

[4] Daniel L. Rosenband and Arvind, Modular Scheduling of Guarded
Atomic Actions, Proceedings of the 41st annual conference on Design
automation (2004)

[5] C. Hoare, Communicating Sequential Processes, Prentice Hall, 1985
[6] S. Bosse, D. Lehmhus, Smart Communication in a Wired Sensor- and

Actuator-Network of a Modular Robot Actuator System Using a Hop-
Protocol with Δ-Routing, Smart Systems Integration, Como, Italy, 23-
24.3.2010
March 29, 2011 17:34 Introduction - Bibliography

Processes and Process Management

Models, Architectures, and API

Table of Content . 11
Description . 11
Multi-Process Architecture . 11
Programming Interface API. 12
Process Hardware Architecture . 14

1. Description

Processes are the main execution environment of a ConPro module. A process
executes a set of instructions in sequential order. Processes communicate with
each other and the outside world using shared objects (Interprocess communica-
tion IPC).

2. Multi-Process Architecture

The figure 1 shows a typical multi-process architecture. Processes execute a set
of instructions in a strict sequential order (sequential process). Instructions can
modify the data- and control path. A process is a local execution context. Pro-
cesses can communicate using global Interprocess-Communication objects, like
globale storage or explicit synchronization objects like mutex, semaphore, timer

12

(Communicating Sequential Processes model by C. Hoare).

 Figure 1. Multi-Process architecture

Abstract objects are accessed by a defined set of methods. The objects are
guarded providing atomic guarded action semantic during concurrent access by
multiple processes using a mutex guarded access scheduler.
A process is mapped to register-transfer-logic and finite-state machines.
The states of the finite-state machine of a process relates to instructions of a pro-
cess on programming level. ConPro instructions are mapped to states in a unique
way. Normally, each simple instruction like data assignement and expressions
are mapped to one state. One state requires at least on clock cycle. A group of
data instructions can be bound to one state, providing concurrency on data path
level. This bounding can be explored automatically by the Basicblock-Scheduler.
Complex instructions like loops or branches are split into several different states.

3. Programming Interface API

Multiple processes are defined on programming level using the process environ-
ment. The process environment consists of a unique process name and the pro-
cess body, consisting of local object definitions and instructions. The formal
syntax specification for a process definition can be found in definition 1, and for
a process array in definition 2. To distinguish a single process of an array, an ar-
ray identifier # can be used in expressions, giving the index of the process starting
with index value zero.
Processes are abstract objects, too. Thus there is a set of methods which can be
applied to processes, described in table 1. They are controlling the state of a pro-

P

O O IO

P

Signals

Abstract Objects

P

R Q

 Queue Storage

Data Access x <- y

Method Access

Method Access O.M

Method Access O.M
March 29, 2011 17:34 Processes and Process Management - Programming Interface API

13

cess.

 Definition 1. Formal syntax specification for a process definition

process-def ::= ’process’ identifier ’:’
 ’begin’ process-body ’end’ parameters? ’;’ .
paramters ::= parameter // ’and’ .
parameter ::= identifier ’=’ value .
process-body ::= obj-definition* instruction* .
obj-definition ::= storage-definition | object-definition | type-definition .

 Definition 2. Formal syntax specification for a process array definition

process-array-def ::= ’array’ identifier ’:’ ’process’ ’[’ number ’]’ .
 ’begin’ process-body ’end’ parameters? ’;’ .
process-identifier ::= ’#’ .

 Table 1. Process object methods

An example of process definitions and the control of processes using object meth-
ods is shown in example 1. Two global queues q1 and q2 are used for interpro-
cess-communication.

 Example 1. Example of process definition and method access

1 queue q1,q2: int[6] with depth=4;
2 process x:
3 begin
4 reg t: int[6];
5 always do
6 begin
7 t <- q1;
8 t <- t * 100;

Method Description
start Start the specified

process concurrent-
ly to calling process.

stop Stop the specified
process.

call Start the specified
process sequential-
ly. This suspends
the calling process
untill the called pro-
cess terminates
(reaches his end
state).
March 29, 2011 17:34Processes and Process Management - Programming Interface API

14

9 q2 <- t;
10 end;
11 end;
12 process y:
13 begin
14 reg u: int[6];
15 reg sum: int[16];
16 sum <- 0;
17 for i = 1 to 10 do
18 begin
19 u <- i asl 2;
20 q1 <- u;
21 u <- q2;
22 sum <- sum + u;
23 end;
24 end;
25 process z:
26 begin
27 x.start ();
28 y.call ();
29 end;

 Table 2. Summary of process definition and access.

4. Process Hardware Architecture

The hardware process architecture is shown in figure 2. The main entity and ar-
chitecture of the hardware implementation of a ConPro process is shown in algo-

Code Description
process P:
begin ... end;

Definition and im-
plementation of a
process with name
P.

process P:
begin ... end
with param=value;

Definition of a pro-
cess with additional
parameters.

array PA: process [N]
begin ... end
with param=value;

Definition of a pro-
cess PA array of
size N with addition-
al parameters.

p.start ():
p.call ();
p.stop ()

Start, call, and stop
the specified pro-
cess.
March 29, 2011 17:34 Processes and Process Management - Process Hardware Architec-
ture

15

rithm 1, and each hardware process from figure 2 is shown in algorithms 2 to 5.

 Figure 2. Hardware architecture of a process

Instructions of a ConPro process are mapped to states of the finite state machine,
named S_xx. There is a start and end state of each process.
The data path is divided into a pure combinational and a transitional part. The first
one accesses local (read only) and global objects (read, write, and control ac-
cess).
Access of global ressources is always guarded by the object access scheduler
(mutual exclusion lock). A request signal (RE/WE or CALL) is activated in the data
path. A guard signal GD is read by the finite state machine. The actual state, ac-
cessing the object, is hold untill the guard signal changes to low level (only for one
clock period).

 Algorithm 1. Hardware model of a ConPro process: VHDL hardware entity and
architecture

entity <process>
port(
 --
 -- Access of globale objects: 1. control signals, 2. data path signals
 signal <object>_RE: out std_logic;
 signal <object>_WE: out std_logic;
 signal <object>_GD: in std_logic;
 signal <object>_RD: in std_logic_vector[];
 -- Clock and Reset signals for processes
 signal conpro_system_clk: in std_logic;
 signal conpro_system_reset: in std_logic
);
end <process>;
March 29, 2011 17:34Processes and Process Management - Process Hardware Architecture

16

architecture main of <process> is
 -- local signals
 -- local objects
 -- local types
 -- state machine
 type pro_states is (
 S_start,
 S_i1,
 S_i2,
 ...
 S_main_end -- PROCESS0[:0]
);
 signal pro_state: pro_states := S_main_start;
 signal pro_state_next: pro_states := S_main_start;
begin
 state_transition: proess
 control_path: process
 data_path: process
 data_trans: process
end;

 Algorithm 2. Hardware model of a ConPro process: VHDL state transition
hardware process (transitional)

state_transition: process(
 PRO_main_ENABLE,
 pro_state_next,
 conpro_system_clk,
 conpro_system_reset
)
begin
 if conpro_system_clk’event and conpro_system_clk=’1’ then
 if conpro_system_reset=’1’ or PRO_main_ENABLE=’0’ then
 pro_state <= S_main_start;
 else
 pro_state <= pro_state_next;
 end if;
 end if;
end process state_transition;
March 29, 2011 17:34 Processes and Process Management - Process Hardware Architec-
ture

17

 Algorithm 3. Hardware model of a ConPro process: VHDL control path hard-

ware process (pure combinational)

 control_path: process(
 PRO_init_GD,
 <object>_GD,
 pro_state
)
 begin
 PRO_main_END <= ’0’;
 case pro_state is
 when S_start =>
 pro_state_next <= S_i1;
 when S_i1 =>
 pro_state_next <= S_i2;
 when S_i2 =>
 if <object>_GD = ’1’ then
 pro_state_next <= S_i2;
 else
 pro_state_next <= S_i3;
 end if;
 when S_main_end =>
 pro_state_next <= S_main_end;
 PRO_main_END <= ’1’;
 end case;
 end process control_path;

 Algorithm 4. Hardware model of a ConPro process: VHDL data path hardware
process (pure combinational)

 data_path: process(
 <object>_RD,
 pro_state
)
 begin
 -- Default values
 <object>_WR <= <expression>;
 <object>_WE <= ’0’;
 case pro_state is
 when S_start =>
 null;
 when S_i1 =>
 <object>_WR <= <expression>;
 <object>_WE <= ’1’;
 when S_i2 =>
 <object>_<method> <= ’1’;
 ...
 end;
March 29, 2011 17:34Processes and Process Management - Process Hardware Architecture

18

 Algorithm 5. Hardware model of a ConPro process: VHDL data path hardware

process (transitional)

 data_trans: process(
 <object>,
 conpro_system_clk,
 conpro_system_reset,
 pro_state
)
 begin
 if conpro_system_clk’event and conpro_system_clk=’1’ then
 if conpro_system_reset = ’1’ then
 <object> <= <expression>;
 else
 case pro_state is
 when S_start =>
 null;
 when S_i2 =>
 null;
 when S_i3 =>
 <object> <= <expression>;
 ...
 end;
March 29, 2011 17:34 Processes and Process Management - Process Hardware Architec-
ture

Object and Data Types

ConPro type system

Table of Content . 19
Introduction . 19
Object Types. 19
Data Types . 20
Data Storage Objects . 21
Signals . 24
Abstract Object Types. 26
Array Types. 26
Structure Types. 30
Enumeration Types. 33

1. Introduction

Objects are specified by their object type α and a data type β. There are data stor-
age and abstract type objects. User defined types providing product types using
arrays and structures and restricted sum types with enumerated symbolic name
lists are available.
There are top-level objects shared by a set of processes, and local process ob-
jects accessed only by one process. Shared objects can be accessed concurrent-
ly. To guarantee atomic and consistent access in this case, a mutual exclusion
lock scheduler is used for each object.

2. Object Types

The set of objects consists of data storage objects ℜ with different access behav-
iour and abstract objects Θ including interprocess-communication objects ℑ. Data
storage objects can be used directly in expressions. Abstract objects are ac-
cessed and manipulated by a set of methods. Objects can be defined locally in
a process context within the process body, or globally in a toplevel module con-
text.
Queues and channels are both data storage and abstract objects (part of inter-

20

process-communication).

 Table 1. Object Types

3. Data Types

Table 2 lists all available data types which can be used with expressions, func-
tions and assignments. These data types can be applied to a subset of available
object types (data storage and some interprocess communication objects). There
are type conversion functions for each basic type.

 Table 2. Data Types

 type α=OT Description
reg Single storage register with

CREW access behaviour.
var Variable storage element

stored in a shared RAM block
with EREW access behaviour.

sig Hardware signal used for
hardware component inter-
connect and access.

channel Synchronized data based IPC
communication (buffered or
unbuffered)

queue Synchronized data based IPC
communication with FIFO ac-
cess behaviour

object Abstract data type object ac-
cessed and modified with
methods

 type β=DT Description
logic Single logic bit
logic[ω] Unsigned integer or logic vec-

tor of width ω bit
int[ω] Signed integer type of width ω

bit (includung sign bit)
char Character byte (≡ logic[8] type,

allocates 8 bits)
March 29, 2011 17:34 Object and Data Types - Data Types

21
4. Data Storage Objects

True bit-scaled data types (TYPE β) and storage objects (subset ℜ of TYPE α)
are supported. The data width can be choosen in the range ω={1,2,…,64} Bit. The
formal syntax of scalar object definition is shown in definition 1, and is summa-
rized in table 3.
A data storage object ℜ is specified and defined by a cross product of types (α×β).
Storage objects can be read in expressions and can be written in assignments.
Definition 2 gives the formal syntax specification.
Registers are single storage elements either used as a shared global object or
as a local object inside a process. In the case of a global object, the register pro-
vides concurrent read access (not requiring a mutex guarderd scheduler) and ex-
clusive mutex guarded write access. If there is more than one process trying to
write to the register, a mutex guarded scheduler serializes the write accesses.
There are two different schedulers available: static priority and dynamic FIFO
scheduled (see examples 1 and 2).
Variables are storage elements inside a memory block either used as a shared
global object (the memory block itself) or as a local object inside a process (see
examples 1 and 2). A variable provides always exclusive mutex guarded read and
write access.
Different variables concerning both data type and data width can be stored in one
or several different memory blocks, which are mapped to generic RAM blocks.
Address management is done automatically during synthesis and is transparent
to the programmer. Direct address references or manipulation (aka pointers) are
not supported.
The memory data width, always having a physical type logic/bit-vector, is scaled
to the largest variable stored in memory. To reduce memory data width, variables
can be fragmented, that means a variable is scattered about several memory
cells.
Different memory blocks can be created explicitly, and variables can be assigned
to different blocks.
Queues are storage elements with FIFO access order and interprocess commun-
cation objects, too. They are always used as a shared global object. Queues and
channels can be used directly in expressions like any other storage object, see
example 3.
Channels are primarily interprocess communcation objects, too. They are always
used as a shared global object. They can be buffered (behaviour like a queue with
one cell, depth is 1) or unbuffered (providing only a handshaked data transfer).
Register, variables, queues, and channels can be defined for product types (ar-

bool Boolean type (≡ logic type, al-
locates one bit)

 type β=DT Description
March 29, 2011 17:34Object and Data Types - Data Storage Objects

22

rays and structure), and sum types (enumeration type), too, see section 7 to 9.

 Definition 1. Formal syntax specification of a data object definition.

dataobj-definition ::= obj-type (identifier // ',') ':' data-type
 [with parameter-list] ';' .
obj-type ::= reg | var | queue | channel .
data-type ::= logic |
 logic '[' number ']' |
 int '[' number ']' |
 bool |
 char .

 Definition 2. Formal syntax specification of a data object access in expres-
sions.

dataobj-access ::= identifier | bit-selector | type-conversion .
identifier ::= name .
bit-selector ::= identifier '[' range ']' .
range ::= number | number to number | number downto number .
type-conversion ::= to_logic '(' dataobj-access ')' |
 to_int '(' dataobj-access ')' |
 to_bool '(' dataobj-access ')' |
 to_char '(' dataobj-access ')' .

 Table 3. Summary of scalar data storage object definitions and access in ex-
pressions

Definition Description
reg name: DT[N]; Defines a new storage object of type

register with a specified data type dt and
optional data width N bits.

queue name: DT[N];
queue name: DT[N] with depth=8;

Defines a new interprocess communi-
cation data object of type queue with a
specified data type dt and optional data
width N bits. Optional parameters are
passed using the with statement.

block RAM;
var name: DT[N] in RAM;
var name: DT[N];

Defines a new storage object of type
variable with a specified data type dt
and optional data width N bits. The ob-
ject is stored in a shared RAM block
(optional).

x ← y; Appearence of stoarge objects on left
and right hand side of an assignment.

x[J] ← y[I]; Bit index selector used in expression
with vector objects.
March 29, 2011 17:34 Object and Data Types - Data Storage Objects

23

 Example 1. Definition of global storage objects and access in expressions

1 reg x,y,z: int[5];
2 var v: int[8];
3 process xyz:
4 begin
5 for i = 1 to 10 do
6 begin
7 x ← x + 1;
8 y ← x * z - 1;
9 if z < 10 and x > 100 then v ← v + z;
10 end;
11 end;

 Example 2. Definition of local storage objects and access in expressions

1 process xyz:
2 begin
3 reg x,y,z: int[5];
4 var v: int[10];
5 for i = 1 to 10 do
6 begin
7 x ← x + 1;
8 y ← x * z - 1;
9 if z < 10 and x > 100 then v ← v + z;
10 end;
11 end;

 Example 3. Definition of interprocess-communication objects (queues) and
access in expressions

1 queue q1,q2: char;
2 process flip:
3 begin
4 reg c: char;
5 c ← ’a’;
6 for i = 1 to 10 do
7 begin
8 q2 ← c + 1;
9 c ← q1;
10 end;
11 end;
12 process flop:
13 begin
14 reg c: char;
15 for i = 1 to 10 do
16 begin
17 c ← q2;
18 q1 ← c + 1;
19 end;
March 29, 2011 17:34Object and Data Types - Data Storage Objects

24

20 end;

5. Signals

Signals are interconnection elements without a storage model. They provide an
interface to external hardware blocks. Signals are used in component structures,
too, shown in example 4. Lines 1 to 7 define a signal port interface of a compo-
nent, and line 8 instantiates a component of this type.
Signals can be used directly in expressions like any other storage object. Signals
can be read in expressions, and a value can be assigned in assignments, shown
in example 4 (for example line 11 using a static map statement, and line 33).
Reading a signal returns the actual value of a signal, for example line 23, but writ-
ing to a signal assigns a new value only for the time the assignment is active, oth-
erwise a default value is assigned to the signal, for example in line 34. Therefore,
there may be only one assignment for a signal.
Signals are non-shared objects, and have no access scheduler. Only one process
may assign values to a signal (usually using the wait for statement), but many
processes may read a signal concurrently. Additionally, signals can be mapped
to register outputs using the map statement.

 Definition 3. Formal syntax specification of a signal object definition.

signal-definition ::= obj-type (identifier // ',') ':' data-type
 [with parameter-list] ';' .
obj-type ::= sig .
data-type ::= logic |
 logic '[' number ']' |
 int '[' number ']' |
 bool |
 char .

 Example 4. Example of signal definitions and signal access. Component
structure elements are signals, too.

1 type dev_type : {
2 port leds: output logic[4];
3 port rd: input logic[8];
4 port wr: output logic[8];
5 port we: output logic;
6 port act: input logic;
7 };
8 component DEV: dev_type;
9 export DEV;
10 reg stat_leds: logic[4];
11 DEV.leds << stat_leds;
12 signal s1: int[8];
March 29, 2011 17:34 Object and Data Types - Signals

25

13 signal s2: logic;
14 reg xs: int[8];
15 export s1,s2;
16 process p1:
17 begin
18 reg x: int[8];
19 x ←0;
20 stat_leds[0] ← 1;
21 for i = 1 to 5 do
22 begin
23 x ← x + s1;
24 end;
25 xs ← x;
26 stat_leds[0] ← 0;
27 end;
28 process p2:
29 begin
30 stat_leds[1] ← 0;
31 for i = 1 to 5 do
32 begin
33 wait for DEV.act = 1 with s2 ← 1;
34 DEV.we ← 1,DEV.wr ← to_logic(xs);
35 end;
36 stat_leds[1] ← 0;
37 end;

6. Abstract Object Types

The set of abstract data type objects Θ define objects implementing reactive
blocks interacting with the processes and the environment, for example interpro-
cess-communication or data links. They are not directly accessible in expressions
like registers (with some exceptions). Abstract objects belong to modules, defined
by the External Module Interface (EMI). A module assigns a type to an abstract
object.
Before abstract objects of a particular type can be used, the appropiate module
must be opened first, shown in definition 4.

 Definition 4. Opening of a module.

open-module ::= open mod-name ';' .

ADT objects can be accessed by their appropiate method set θ={θ1,θ2,...}. A
method is applied using the selector ’.’ operator followed by a list of arguments
passed to method parameters, with arguments separated by a comma list encap-
March 29, 2011 17:34Object and Data Types - Abstract Object Types

26

sulated between paranthesis, shown in definition 5.

 Definition 5. Object method calls. The object must be first created with the ob-
ject defintion statement.

object-defintion ::= object obj-name ':' obj-type ';' .
object-call ::= obj-name '.' method-name '(' (argument \\ ',') ')' ';' .

Methods which do not expect arguments are applied with an empty argument list
(). Table 4 summarizes the statements required for using abstract object types.

 Table 4. Summary of abstract object module inclusion, object definition and
object access.

7. Array Types

Arrays are product types and can be applied to data storage objects including
queues and channels. Additionally, arrays can be applied to abstract objects, too,
providing indexed object selection. Array elements can be accessed with static
selectors (constant values or expressions foleded to a constant value), and with
dynamic selectors (expressions referencing storage objects).
Arrays of variables are implented in memory blocks. The element access is per-
formed by address calculation and access of the memory block. Arrays of any
other object type are always implemented with single objects. If elements of such
an array only accessed with static selectors, the array access is replaced by the
appropiate object. If at least there is one element access with a dynamic selector
expression, all objects of this array are accessed my multi- and demultiplexer
blocks (simulated memory block implementation).
Arrays of processes can be defined, too. A process identifier symbol #=[0,N-1]
can be used in expressions of each process created by the array definition.
Multi-dimensional arrays are supported, too. But in this case each dimension
must be of power 2 (or will be aligned during the synthesis). Multi-dimensional ar-
rays are mapped to one-dimensional arrays to simplify hardware synthesis. the

Statement Description
 open Module; Open specified ADTO module
 object obj: objtype; Defines and instantiates a new object

of specified ADT.
 object obj: objtype with
 param=valu;

Defines and instantiates a new object
of specified ADT type with additional
parameter settings.

 obj.meth Object method access using the selec-
tor operator
March 29, 2011 17:34 Object and Data Types - Array Types

27

one-dimensional idnex is calculated by the following equation:

 Equation 1.

Formal syntax definitions 6 and 7 show definition and access of arrays, summa-
rized in table 5. An extended example 5 demonstrates object and storage arrays.

 Definition 6. Formal syntax specification for array definition

array-storage-definition ::= array (identifier // ',') ':'
 object-type ’[’ dim ’]’ of data-type
 [with parameter-list] ';' .
array-abstract-object-definition ::= array (identifier // ',') ':'
 object object-type ’[’ dim ’]’
 [with parameter-list] ';' .
array-process-definition ::= array (identifier // ',') ':'
 process ’[’ dim ’]’
 begin
 instructions
 end [with parameter-list] ';' .
dim ::= (number // ’,’) .

 Definition 7. Formal syntax specification for array element selection and ac-
cess

array-selector ::= identifier '.' (static-selector | dyanmic-selector) .
static-selector ::= ’[’ (number // ’,’) ’]’ .
dynamic-selector ::= ’[’ (expression // ’,’) ’]’ .
expression ::= identifier | simple-expression .
dim ::= (number // ’,’) .

I I0 I1 …, ,() I0 I iSi 1–
i 1=

D 1–

∑+=
March 29, 2011 17:34Object and Data Types - Array Types

28

 Table 5. Summary of array type definition and array element access.

 Example 5. Arrays of storage and abstract objects (including processes)

1 open Core;
2 open Process;
3 open Semaphore;
4

5 array fork: object semaphore[5] with
6 Semaphore.depth=8 and Semaphore.scheduler="fifo";
7 array eating,thinking: reg[5] of logic;
8

9 process init:
10 begin
11 for i = 0 to 4 do
12 begin
13 fork.[i].init (1);
14 end; -- with unroll;
15 ev.init ();
16 end;
17

18 function eat(n):
19 begin
20 begin

Statement Description
array A: OT[N] of DT;
array A: OT[N,M,O] of DT;

Defines an storage array of size N with
object type OT and data type DT. Sec-
ond line defines a multi-dimensional ar-
ray (matrix).

array A: OT[N] of DT
 with param=value;

Defines an storage array of size N with
object type OT and data type DT, with
additional parameter settings.

array A: object obj[N]
 with param=value;

Defines an abstract object array of size
N with object type obj, with additional
parameter settings. Note: object pa-
rameters must be preceeded by the
module name and the dot selector!

array A: process[N] of
begin
 B
end

Defines an array of N processes.

a.[2] <- a.[i+1] + a.[0];
timer.[1].await ();
timer.[i+1].await ();

Access of storage array elements using
the dot selector on right-hand and left-
hand sides of an expression. Second
lines selects an abstract object and ap-
plies the method to this object.
March 29, 2011 17:34 Object and Data Types - Array Types

29

21 eating.[n] <- 1;
22 thinking.[n] <- 0;
23 end with bind;
24 wait for 5;
25 begin
26 eating.[n] <- 0;
27 thinking.[n] <- 1;
28 end with bind;
29 end with inline;
30

31 array philosopher: process[5] of
32 begin
33 if # < 4 then
34 begin
35 always do
36 begin
37 -- get left fork then right
38 fork.[#].down ();
39 fork.[#+1].down ();
40 eat (#);
41 fork.[#].up ();
42 fork.[#+1].up ();
43 end;
44 end
45 else
46 begin
47 always do
48 begin
49 -- get right fork then left
50 fork.[4].down ();
51 fork.[0].down ();
52 eat (#);
53 fork.[4].up ();
54 fork.[0].up ();
55 end;
56 end;
57 end;
58

59 process main:
60 begin
61 init.call ();
62 for i = 0 to 4 do
63 begin
64 philosopher.[i].start ();
65 end;
66 end;
March 29, 2011 17:34Object and Data Types - Array Types

30
8. Structure Types

Structure types are used to define a product of types from the set of core data
types, providing different data widths, too. In contrast to arrays, a structure type
must be defined first without creation of any data object. After type definition stor-
age data objects of this type can be created (instantiated). Supported storage ob-
ject types are: register, variable, queue, channel. Additionally structure types can
be used to construct signal types and component (port) interfaces.
There are three different subclasses of structures for different purposes:
Type Structure

The generic structure type binds different named structure elements with dif-
ferent data types to a new user defined data type, the native product type.

Bit-Type Structure
This structure subclass provides a bit-index-name mapping for storage ob-
jects. All structure elements have the same data type. The bit-index is either
one bit number or a range of bits. This structure type provides symbolic/named
selection of parts of vector data type (for example logic vector and integer
types) and clarifies bit access of objects.

Component Structure
This structure defines hardware component ports, either of a ConPro module
toplevel port, or of an embedded hardware component (modelled on hardware
level). This structure type can only be used with component object defintions.
The component type has equal behaviour like the signal type.

The structure type defintion therefore contains only data types, with binding of
one object type using the generic object definition statement. A structure type
binds a set of different structure elements, distinguished by their names.

Tip

The member names of structures should begin with a lower case letter, the ele-
ments of a enumerated symbolic list should begin with a uppercase letter.

Elements of a structure can be accessed using the dot selector: the object and
element name is concatenated with a dot. Further selections (array, bit range) can
be applied, too.
In the case the object type of a structure is a register, a set of independent regis-
ters are created. In the case of a variable type, structure elements are stored into
a memory block.
Arrays from structure types can be created. For each structure element a different
array is created.
Hardware component port types are defined with structures, too, with the differ-
ence that for each structure element the direction of the signal must be specified.
Some care must be taken for the direction: if the component is in lower hierarchi-
March 29, 2011 17:34 Object and Data Types - Structure Types

31

cal order (an embedded external hardware component), the direction is seen from
the external view of the hardware component. If the component is part of the top-
level port interface of a ConPro module, it must be seen from the internal view.
Formal syntax definitions for structure definitions and structure element access
can be found in definitions 8 to 9. An extended demonstration of the capabilities
of structure types can be found in example 6. Table 6 summarizes the definition
and usage of structure types.

 Definition 8. Formal syntax specification for structure type definition

struct-type-definition ::= type (identifier // ',') ':' ’{’
 (identifier ’:’ data-type ’;’ //)
 ’}’ ’;’ .
bit-type-definition ::= type (identifier // ',') ':' ’{’
 (identifier ’:’ range ’;’ //)
 ’}’ ’;’ .
component-type-definition ::= type (identifier // ',') ':' ’{’
 (’port’ identifier ’:’ data-dir data-type ’;’ //)
 ’}’ ’;’ .
object-definition ::= object-type (identifier // ',') ':' struct-type .
component-definition ::= component (identifier // ',') ':' component-type .
range ::= number | number ’to’ number | number ’downto’ number .

 Definition 9. Formal syntax specification for structure element selection and
access

struct-selector ::= identifier '.' identifier .

 Example 6. Structures with register, variable and component object types.

1 -- Multi-type structure type definition
2 type registers : {
3 ax : logic[32];
4 bx : logic[32];
5 sp : logic[16];
6 };
7 type image : {
8 row: logic[32%4];
9 col: logic[32%4];
10 };
11-- Component structure type defintion
12type uart : {
13 port rx : input logic[2];
14 port tx : output logic[2];
15 port re : output logic;
16 port we : input logic;
17 };
18-- Bit-type structure type defintion
19type command : {
20 ack: 0;
March 29, 2011 17:34Object and Data Types - Structure Types

32

21 cmd: 1 to 2;
22 data: 3 to 7;
23 };
24

25block ram1;
26reg regs : registers;
27var vegs : registers in ram1;
28var vim : image in ram1;
29var after : logic[16] in ram1;
30component dev1: uart;
31reg cmd: command;
32process p1:
33begin
34 reg x: logic[2];
35 type cpu_regs : {
36 ax : logic[8];
37 bx : logic[8];
38 sp : logic[8];
39 };
40 var cpu : cpu_regs in ram1;
41 reg row: logic[32];
42 ...
43 regs.ax ← row;
44 regs.ax ← regs.ax + 1;
45 vegs.ax ← vegs.ax + intern;
46 ...
47 wait for dev1.re = 1;
48 x ← dev1.rx;
49 dev1.tx ← x, dev1.we ← 1;
50 cmd ← 0;
51 cmd.ack ← 1;
52 cmd.cmd ← x;
March 29, 2011 17:34 Object and Data Types - Structure Types

33

53 end;

 Table 6. Summary of structure type definition and structure element access.

9. Enumeration Types

Enumeration types define a mapping of symbolic names to constant integer num-
bers, with formal syntax definition 10. Elements of a enumerated type can be
used in expressions like any other storage objects. Object of a enumerated type

Statement Description
tpye ST: {
 e1: DT1;
 e2: DT2; ...
};

Defines a new structure type with ele-
ments e1,e2,... of data types
DT1,DT2,...

tpye CT: {
 port e1 : DIR1 DT1;
 port e2 : DIR2 DT2; ...
};

Defines a new component port type
with port elements e1,e2,... of data
types DT1,DT2,... with specific signal
direction DIR1,DIR2,...

tpye BT: {
 e1: BN1;
 e2: BN2A to BN2B; ...
};

Defines a new bit type structure with el-
ements e1,e2,... and bit-widths BN1,
BN2...

reg R: ST;
var R: ST;
reg R; BT;

Defines scalar storage objects of struc-
ture type ST and bit type BT.

array AS: OT[N] of ST
 with PARAMS;

Defines an array of storage objects with
object type OT and structure type ST.

component C: CT;
export C;

Defines a new component structure
and exports the component structure.

ST.e1 <- ST.e2; Access of structure elements in assign-
ments and expressions.
March 29, 2011 17:34Object and Data Types - Enumeration Types

34

can be created like any other storage object definition, shown in example 7.

 Definition 10. Formal syntax specification for enumeration type definition

enum-type-definition ::= type (identifier // ',') ':' ’{’
 (identifier ’;’ //)
 ’}’ ’;’ .
object-definition ::= object-type (identifier // ',') ':' enum-type .

 Example 7. Enumeration types

1 type states : {
2 S_START;
3 S_1;
4 S_2;
5 S_END;
6 };
7 reg state,next_state: states;
8 process fsm:
9 begin
10 while state <> S_END do
11 begin
12 match state with
13 begin
14 when S_START: state ← S_1;
15 when S_1: state ← S_2;
16 when S_2: state ← S_END;
17 end;
18 end;
19 end;
March 29, 2011 17:34 Object and Data Types - Enumeration Types

External Module Interface EMI

Interconnect of hardware and algorithmic programming level using abstract object
types and methods

Description . 35
Table of Content . 35
Introduction . 35
EMI Structure . 36
Parameter Section . 37
Methods Section . 38
Interface Section. 39
Mapping Section . 41
Access Section . 43
Signals Section . 46
Process Section . 49
Environment . 57

1. Description

The external module interface provides an object orientated programming model
and interface of hardware blocks modelled on hardware behavioural level using
a modified subset of VHDL.

2. Introduction

The External Module Interface (EMI) is used to connect and interface hardware
blocks modelled on behavioural hardware level with the ConPro process and ab-
stract object framework on algorithmic programming level.
The purpose of the EMI module interface is to embed and connect external VHDL
coded components directly into a ConPro implementation with direct access from
the ConPro programming level (process- and top-level) using the Abstract Data
Type Object (ADTO) interface and method calls applied to those objects. In con-
trast to external VHDL components (ConPro component interface) requiring sig-
nal objects for interconnection with ConPro modules, in this case VHDL blocks
are accessed and linked invisible and transparently to the programming level with
the ConPro ADTO interface.
An EMI module can be opened and compiled using the open statement.
The EMI module is splitted in the access and implementation part of an abstract

36

object. The EMI module file (file suffix .mod) defines

1.all methods available for object access,
the method access, on ConPro process level defining data and control path

parts and the implementation (scheduling) of the object access, too,
all required signals for process interconnect and implementation,
the implementation of the abstract object using VHDL processes, at least the

object access scheduler.
Each EMI module defines a new abstract object type. Objects can be created
from this new type using the object statement.
The EMI language is a modified subset of VHDL on behavioural (and structural)
level with embedded interpreter statements evaluated during synthesis, targeting
the ConPro programming language level (ADTO interface).
Figure 1 shows a typical architecture of embedded abstract objects accessed by
different processes. There are two different classes of abstract objects: (1) ob-
jects without external system interaction and (2) objects connected to the system
hardware interconnect, for example bus, memory, or link objects.

 Figure 1. Typical system architecture with embedded abstract objects modelled and imple-
mented with EMI.

3. EMI Structure

An EMI module file is divided into several sections, where each section consists
of a section header and a section body. Each section has a class identifier start-
ing with the # character. Additionally there are labeled sections with a specified
name label. Sections can be conditional and are evaluated depending on boolean

P

O O IO

P

Signals

EMI

Method Access O.M

Method Access O.M
March 29, 2011 17:34 External Module Interface EMI - EMI Structure

37

expressions using EMI parameters.
Overview:
#parameter

Declaration and definition of EMI module parameters.
#methods

Declaration of EMI object methods (type signature).
#access

Definition of EMI object access on hardware level (request, reply, and acknowl-
dge interaction by ConPro processes during method call).

#interface
Defines signals required in VHDL port for object access.

#mapping
Defines signal mapping required on toplevel for object access (toplevel Con-
Pro process interconnect).

#signals
Declaration of hardware signals required for implementation of EMI objects.

#process
Definition of VHDL hardware processes required for implementation of EMI ob-
jects .

4. Parameter Section

Name
#parameter

Syntax
#parameter
begin
 $name; -- (1)
 $name <= m; -- (2)
 $name[n1,n2,n3,...] <= m; -- (3)
 $name[a to b] <= m; -- (4)
 ...
end;

Description
This is the paramter section. Parameters can be used inside the EMI mod-
ule file. New values can be assigned either on object creation or using meth-
od calls (set method class). Parameters are either scalar or vector (array/
list) types.
This section defines the parameter variables used in an external module in-
terface definition. Different forms of parameter definitions are provided:
(1) Giving only the parameter name preceeded by the $ character defines
March 29, 2011 17:34External Module Interface EMI - Parameter Section

38

a variable without any default and initialized value. On object instanti-
ation the parameter must be assigned a value otherwise an error oc-
curs during synthesis, or using the set class method alternatively.

(2) In this case the parameter variable gets a default value. Parameter val-
ue assignment on object instantiation is optional.

(3) In this case the parameter variable gets a default value. Parameter val-
ue assignment on object instantiation is optional. Additional a set of al-
lowed values is included in paranthesises after the parameter name.

(4) In this case the parameter variable gets a default value. Parameter val-
ue assignment on object instantiation is optional. Additional a range of
allowed values is included in paranthesises after the parameter name.

Summary

 Table 1. Parameter section

Example
1#parameter
2begin
3 $datawidth[8,10,12,14,16] <= 8;
4 $seed <= 0xffff;
5 $arch001["fifo","static"] <= "fifo";
6end;

5. Methods Section

Name

Syntax Description
#parameter
begin ... end;

Definition of a parameter
section

$P; Definition of a parameter
with polymorph type.

$P[A,B,..]; Definition of a parameter
with a set of possible val-
ues (sum type, elements
A,B,..).

$P <= N; Definition of parameter
with initialization (type de-
rived from value N).
March 29, 2011 17:34 External Module Interface EMI - Methods Section

39

 #methods

Syntax
#methods
begin
 name(exprside:datatype [,exprside:datatype]);
 ...
end;

exprside ::= #lhs | #rhs | #lrhs
datatype ::= logic | logic[width] |
 int[width] | bool | natural

Description
This is the method programming interface declaration section of the EMI
module file. This section defines all exported and accessible methods, spec-
ifying the method name and the method call parameter type declaration:
1.the way the argument objects are used during method call, either on left-

hand-side (LHS) or right-hand-side (RHS) (or both) of an expression,
meaning read or write access respectively of the object used as an argu-
ment,

the expected data type of the argument object, though width scaling of the
actual argument, used in method call, to the expected method paramter,
used in the EMI-ADTO implementation, is performed by the EMI compil-
er.

If a method doesn't expect an argument, an empty paranthesis pair () is
used in the definition. Up to 9 method call parameters can be specified.

Example
1#parameter
2begin
3 $datawidth[8 to 16] <= 8;
4 $addrwidth <= 16;
5end;
6

7#methods
8begin
9 init();
10 read(#lhs:logic[12]);
11 time(#rhs:natural);
12 read2(#lhs:logic[$datawidth],#rhs:logic[$addrwidth]);
13end;

6. Interface Section
March 29, 2011 17:34External Module Interface EMI - Interface Section

40

Name

 #interface
Syntax

#interface
begin
 signal name_$O : dir datatype; -- (1)

 foreach $p in $P do -- (2)
 begin
 signal name_$O : dir datatype;
 ...
 end;

 foreach $p in $P.meth do -- (3)
 begin
 signal name_$O : dir datatype;
 ...
 end;

 ...
end;
dir ::= in | out | inout
datatype ::= logic | logic[width] |
 int[width] | bool |
 std_logic | std_logic_vector[width] |
 signed[width]

Description
ConPro-Process-Level
This interface section defines the part of the VHDL component port interface
required for the hardware implementation of ConPro processes accessing
methods of this ADT object. ConPro processes are synthesized to VHDL
components and RTL using a finite-state-machine (FSM). The ConPro mod-
ule toplevel is synthesized and mapped to a VHDL component, too, imple-
menting ConPro toplevel objects. Additionally, the synthesized ConPro-
process VHDL components are structurally connected on this module level.
An abstract object access requires data and control signals, routed up from
the ConPro process level to the ConPro module level where the abstract ob-
ject is implemented, except of abstract objects defined locally on ConPro
process level.
There are two ways for adding process port signals:
(1) Generic signals independent on a particular method access. These

signals are added to the VHDL process port for each process using the
abstract object. The signal name can contain the object name variable
$O.

(2) Signals depending on ConPro processes accessing this object and a
specific method. The signal name can contain the object name vari-
March 29, 2011 17:34 External Module Interface EMI - Interface Section

41

able $O. The signal definifion adds the signal only for ConPro process-
es using this object method.

The signal port direction and the signal type must be specified.
Supported signal directions are:
in

The related process reads from this signal.
out

The related process writes to this signal.
inout

The related process both reads from and writes to the signal. This is the
bidirectional bus behaviour.

Supported signal types are aligned to the core ConPro data type system,
and they are:
logic

ConPro logic data type, width 1 bit, mapped in general to the VHDL
std_logic type.

logic[n]
ConPro logic data type, width n bit, index range is in general [n-1
downto 0], mapped in general to the VHDL std_logic_vector(n-
1 downto 0) type.

int[n]
ConPro signed integer (int) data type, width n bit, index range is in gen-
eral [n-1 downto 0], mapped in general to the VHDL signed(n-1
downto 0) type.

bool
ConPro boolean (bool) data type, mapped in general to the VHDL
std_logic type.

std_logic
VHDL std_logic type

std_logic_vector[n]
VHDL std_logic_vector(n-1 downto 0) type. Index direction and
range depends also on ConPro synthesis settings.

signed[n]
VHDL signed(n-1 downto 0) type. Index direction and range de-
pends also on ConPro synthesis settings.

Example
1#interface
2begin
3 foreach $p in $P.read do
4 begin
5 signal F_$O_RE: out std_logic;
6 signal F_$O_RD: in std_logic_vector[$datawidth];
March 29, 2011 17:34External Module Interface EMI - Interface Section

42

7 end;
8 foreach $p in $P.init do
9 begin
10 signal F_$O_INIT: out std_logic;
11 end;
12 foreach $p in $P do
13 begin
14 signal F_$O_GD: in std_logic;
15 end;
16end;

7. Mapping Section

Name
 #mapping

Syntax
#mapping
begin
 foreach $p in $P do -- (1)
 begin
 signame_$O => signame_$O_$p;
 end;
 foreach $p in $P.meth do -- (2)
 begin
 signame_$O => signame_$O_$p;
 end;
 ...
end;

Description
ConPro-Module-Level
This mapping section defines the part of the VHDL component port mapping
required for toplevel interconnect of ConPro processes accessing methods
of this ADT object. ConPro processes are synthesized to VHDL components
and RTL and a finite-state-machine (FSM). The ConPro module toplevel is
synthesized and mapped to a VHDL component, too, implementing ConPro
toplevel objects. Additionally, the synthesized ConPro-process VHDL-com-
ponents are structurally connected and mapped on this module level. An ab-
stract object access requires data and control signals, routed up from the
ConPro-process level to the ConPro-module level where the abstract object
is implemented, except of abstract objects defined on ConPro process level.
On the left hand side there is the (local) ConPro-process context level (VH-
DL entity port interface) signal, on the right hand side there is the (global)
March 29, 2011 17:34 External Module Interface EMI - Mapping Section

43

ConPro-module context level signal (VHDL component port mapping on in-
stantiation). The object name $O and process name $P are replaced re-
spectively. All signal mappings appearing in this section must be defined in
the #interface section.
(1) The signal mapping is applied to each process accessing this object.
(2) The signal mapping is applied to each process accessing this object

with a specified method.

Example
1#mapping
2begin
3 foreach $P.read do
4 begin
5 F_$O_RE => F_$O_$P_RE;
6 F_$O_RD => F_$O_$P_RD;
7 end;
8 foreach $P.init do
9 begin
10 F_$O_INIT => F_$O_$P_INIT;
11 end;
12 foreach $P do
13 begin
14 F_$O_GD => F_$O_$P_GD;
15 end;
16end;

8. Access Section

Name
 #access
March 29, 2011 17:34External Module Interface EMI - Access Section

44

Syntax

method:#access
begin
 #data
 begin
 signame_$O <= expr1 when $ACC else expr0; -- (1)
 $ARG# <= signame_$O when $ACC else expr0; -- (1b)
 ...
 end;

 #control
 begin
 null; -- (2)
 wait for cond-expr; -- (3)
 end;

 #set
 begin
 $param <= $ARG#; -- (4)
 ...
 end;
end;

Description
ConPro-Process-Level
ConPro processes are synthesized to VHDL components and RTL and a fi-
nite-state-machine (FSM). The ConPro module toplevel is synthesized and
mapped to a VHDL component, too, implementing ConPro toplevel objects.
Additionally, the synthesized ConPro-process VHDL-components are struc-
turally connected and mapped on this module level. An abstract object ac-
cess requires data and control signals, routed up from the ConPro-process
level to the ConPro-module level where the abstract object is implemented,
except of abstract objects defined on ConPro process level.For each meth-
od defined in the #methods section there is an access definition.
An access definition consists of the data and control path of a ConPro-pro-
cess defined in subsections #data and #control respectively. There are
methods only required for setting object parameters on toplevel. In this case
the #set subsection is used instead, but can be used additionally to data and
control path sections.
The data path defines expression assignments 1. of local signals, 2. of val-
ues to object access signals defined in the #interface section, or 3. alter-
natively assigning these object access signals to a method call argument.
The method call arguments are related with the variables $ARG1, $ARG2,
$ARG3... for the first, the second, the third ... method call argument.
The control path is used to suspend the ConPro process control state ma-
chine (calling this method) untill a condition is satisfied, mainly the object
guard.
March 29, 2011 17:34 External Module Interface EMI - Access Section

45

(1) Expression expr1 is assigned to the LHS signal during access, ex-

pression expr0 otherwise. Independent of the data type of the LHS,
expr0 can be the natural number 0. The data type of the LHS object is
determined automatically in this case, and hence the VHDL value to
be assigned, too.
The LHS is an object access signal. The RHS can be an object access
signal, a method call argument or a constant value.

(1b) An object access signal or a constant value is assigned to the method
call argument $ARG#. The variable $ARG# is substituted with the actual
argument signal name. Control signals required for the method argu-
ment acces (like the write enable signal) are generated automatically
by the synthesis compiler!

(2) There is no control path statement. Object access never blocks control
path and consumes exactly on time unit. Else case (3) must be ap-
plied:

(3) The method access blocks the control path of the calling ConPro pro-
cess untill condition cond-expr is satisfied. Else case (2) must be ap-
plied. Usually the object guard signal is used for blocking:

 signame_$o_GD = '0';

(4) The actual argument value is assigned to the parameter variable on
the LHS. This is a method call statement used only for configuration of
the object, either on toplevel outside processes or inisde a process! Ei-
ther an integer value can be assigned or a data object can be imported
and accessed inside the ADTO implementation (actually only signals
and registers with read access only).

Environment variables are always array types. Each time the set subsection
is used to assign argument values to an environment variable, the actual
value is added to this array. Therefore some array functions exists which
can be used in expressions. For example it is desired to work with different
baud rates of a serial communication link, and the baud rate should be
changeable during runtime. In this case it is not usefull to pass the original
baud rate value eacht time a aspecified set method occurs in ConPro-pro-
cesses, it is more likely to pass an index value requiring much less bits to
each method call. Here is an example to implement such an method access
March 29, 2011 17:34External Module Interface EMI - Access Section

46

(time) for the case of a timer (using the environment variable $time):
time: #access
begin
 #set
 begin
 $time <= $arg1;
 end;
 #data
 begin
 TIMER_$O_TIME_SET <= '1' when $ACC else '0';
 TIMER_$O_TIME <= #index($time,$ARG1) when $ACC else 0;
 end;
 #control
 begin
 wait for TIMER_$O_GD = '0';
 end;
end;

Example
1 init: #access
2 begin
3 #data
4 begin
5 F_$O_INIT <= '1' when $ACC else '0';
6 end;
7 #control
8 begin
9 null;
10 end;
11 end;
12

13 read: #access
14 begin
15 #data
16 begin
17 F_$O_RE <= '1' when $ACC else '0';
18 $ARG1 <= F_$O_RD when $ACC else 0;
19 end;
20 #control
21 begin
22 wait for F_$O_GD = '0';
23 end;
24 end;
25

26 time: #access
27 begin
28 #set
29 begin
30 $time <= $ARG1;
March 29, 2011 17:34 External Module Interface EMI - Access Section

47

31 end;
32 end;

9. Signals Section

Name
 #signals

Syntax
#signals [(cond)]
begin
 signal $signame_$O : datatype; -- (1)
 ...
 foreach $p in $P do
 begin
 signal $signame_$O_$p : datatype; -- (2)
 ...
 end;
 foreach $p in $P.meth do
 begin
 signal $signame_$O_$p : datatype; -- (3)
 ...
 end;
 type typname is { -- (4)
 el1;
 el2;
 ...
 };
 type typname array[range] -- (5)
 of datatype;
 ...
end;

datatype ::= 'logic' | 'logic[' width ']' |
 'int[' width ']' | bool |
 'std_logic' | 'std_logic_vector[' width ']' |
 'signed[' width ']'
cond ::= '$' param '=' value ['and' '$' param '=' value...]
range ::= a 'to' b | a 'downto' b | size

Description
ConPro-Module-Level
This section defines VHDL signals required for object implementation on
global module level, and data and control signals required for method ac-
cess from ConPro processes. Remember the ConPro system hierarchy:
March 29, 2011 17:34External Module Interface EMI - Signals Section

48

there is a process level and a module level containing processes. Each Con-
Pro process is synthesized into a VHDL component entity. A ConPro mod-
ule is also synthesized into a VHDL component entity, providing the
interconnections for all contained ConPro processes. Each process access-
ing this ADT object requires it own set of data and control signals.
There can be exist more than one signals section. There are unconditional
(the usual case) and conditional signals sections, only applied if parameter
conditions are satisfied.
There are three different signal classes:
(1) Generic signals independent on ConPro processes and method ac-

cess, mainly implementation dependent.
(2) Signals depending on ConPro processes accessing this object. The

signal name can contain the ConPro process name variable $P (ar-
ray, foreach statement required) and the object name variable $O.
The signal definifion adds for each ConPro process accessing this ob-
ject the specified signal, the process variable is replaced by the related
process name.

(3) Signals depending on ConPro processes and method access. The sig-
nal name can contain the ConPro process name variable $P (array,
foreach statement required) and the object name variable $O. The
signal definifion adds for each ConPro process accessing this object
and applying the specified method the specified signal, the process
variable is replaced by the related process name.

(4) Definition of an enumerated symbolic type.
(5) Definition of an array type.
Supported signal types are aligned to the core ConPro data type system,
and they are:
logic

ConPro logic data type, width 1 bit, mapped in general to the VHDL
std_logic type.

logic[n]
ConPro logic data type, width n bit, index range is in general [n-1
downto 0], mapped in general to the VHDL std_logic_vector(n-1 downto
0) type.

int[n]
ConPro signed integer (int) data type, width n bit, index range is in gen-
eral [n-1 downto 0], mapped in general to the VHDL signed(n-
1 downto 0) type.

bool
ConPro boolean (bool) data type, mapped in general to the VHDL
std_logic type.

std_logic
March 29, 2011 17:34 External Module Interface EMI - Signals Section

49

VHDL std_logic type

std_logic_vector[n]
VHDL std_logic_vector(n-1 downto 0) type. Index direction
and range depends also on ConPro synthesis settings.

signed[n]
VHDL signed(n-1 downto 0) type. Index direction and range de-
pends also on ConPro synthesis settings.

Example

1#signals
2begin
3 --
4 -- Implementation signals
5 --
6 signal F_$O_d_in: std_logic;
7 signal F_$O_data_shift: std_logic_vector[$datawidth];
8 signal F_$O_data: std_logic_vector[$datawidth*2-1];
9 signal F_$O_shift: std_logic;
10 signal F_$O_init: std_logic;
11 signal F_$O_avail: std_logic;
12
13 foreach $p in $P.read do
14 begin
15 signal F_$O_$p_RE: std_logic;
16 signal F_$O_$p_RD: std_logic_vector[$datawidth];
17 end;
18
19 foreach $p in $P.init do
20 begin
21 signal F_$O_$p_INIT: std_logic;
22 end;
23
24 foreach $p in $P do
25 begin
26 signal F_$O_$p_GD: std_logic;
27 end;
28end;
29

30#signals ($datawidth=8)
31begin
32 signal F_$O_count: std_logic_vector[3];
33end;
34

35#signals ($datawidth=10)
36begin
37 signal F_$O_count: std_logic_vector[4];
March 29, 2011 17:34External Module Interface EMI - Signals Section

50

38end;

10. Process Section

Name
#process

Syntax
procname:#process [(cond)]
begin
 statement;
 statement;
 ...
end;

cond ::= '$' param '=' value ['and' '$' param '=' value...]

Description
ConPro-Module-Level
This section defines a named VHDL hardware process (procname) required
for the implementation of an object on hardwae behaviour level. There can
be several process sections, each defining one process appearing on Con-
Pro-module level, or in some limited cases on ConPro-process level iff the
object has only a ConPro process local context and was defined inside a
ConPro process. A VHDL hardware process implementation can be condi-
tional (cond).
At least one process must exist for the object implementation: the access
scheduler guarding the (usually) shared object. Several ConPro processes
can access a shared object, therefore some kind of mutual exclusion lock
must be implemented. The main object implementation, modelling the be-
haviour of this ADTO, is usually modelled within a separate VHDL process
definition.
Parameter variables are extensively used inside the VHDL hardware pro-
cess definition:
$CLK

This parameter is used inside conditional expressions and is only true if
there is a system clock event. The clock edge is determined by the Con-
Pro program and compiler settings, and expands to VHDL:
$CLK => conpro_system_clk'event and conpro_system_clk = '1' --

 rising edge
$CLK => conpro_system_clk'event and conpro_system_clk = '0' --
March 29, 2011 17:34 External Module Interface EMI - Process Section

51

 falling edge

The clock signals are already defined and may not be defined in the
#signals section.

$RES
This parameter is used inside conditional expressions and is only true if
the system reset is active. The active reset signal logic level is deter-
mined by the ConPro program and compiler settings, and expands to VH-
DL:
$RES => conpro_system_reset = '1'
$RES => conpro_system_reset = '0'

The reset signals are already defined and may not be defined in the
#signals section.

$myreg
ConPro data objects (actually only signals) can be imported into an object
module. For example a module implements a bus interface, than external
bus signals must be imported. They are attached to a module parameter
$myreg (or any other name excpet reserved parameters) using the ac-
cess set method, defined in the #access section.
EMI:
 #methods
 begin
 set(#rhs:logic[8]);
 end;
 set:#access
 begin
 #set:
 begin
 $myreg <= $ARG1;
 end;
 end;
 #process
 begin
 s <= $myreg;
 $myreg <= s;
 end;
...
ConPro:
 myobj.set(sigx1y);

VHDL:
 s <= $myreg; => s <= sigx1y_RD;
 $myreg <= s; => sigx1y_WR <= s;

The imported signals are already defined and may not be defined in the
#signals section.
March 29, 2011 17:34External Module Interface EMI - Process Section

52

The sensivity list of the VHDL process is computed automatically.

VHDL Subset
Only a subset of VHDL is supported, and there are some adjustments on
syntax level to the ConPro programming language.
if-then-else

Syntax is slightly modified. A group of statements requires block environ-
ment begin-end.
if expr then statement ;
if expr then statement else statement;
statement ::= single-statement | 'begin' statement-list 'end'

if-then-else-cascade
Either modelled using the elsif VHDL or else if ConPro construct or mod-
elled with the sequence construct.
if expr then statement else if expr then statement ...;
if expr then statement elsif expr then statement ...;
statement ::= single-statement | 'begin' statement-list 'end'

sequence
begin
 if expr then statement;
 if expr then statement;
 ...
 foreach $p in $P do
 begin
 if expr then statement;
 ...
 end;
 foreach $p in $P.meth do
 begin
 if expr then statement;
 ...
 end;
 if others then statement;
end;

The sequence is expanded to a if-then-elsif cascade. The last case (op-
tional) is the default case if no other conditional expression can be ap-
plied.
March 29, 2011 17:34 External Module Interface EMI - Process Section

53

Example:
sequence
begin
 if a = '1' then s <= 0;
 if b = '1' then s <= 2;
 foreach $p in $P.init do
 begin
 if c_$p = '1' then s <= 3;
 end;
 if others then s <= 4;
end;

=> expands to (VHDL) =>

if a = '1' then s <= 0
elsif b = '1' then s <= 2
elsif c_p1 = '1' then s <= 3
elsif c_p2 = '1' then s <= 3
else s <= 4;

During synthesis, conditional expressions, containing only constant val-
ues and environment variables, are tried to be evaluated to constant val-
ues. Depending on the result either the true or the false case statements
are replaced by the conditional statement.

case
Syntax is slightly modified and aligned to the ConPro programming lan-
guage. A group of statements requires block environment begin-end.
case expr is
begin
 when val1 : statement;
 when val2 : statement;
 ...
 when others : statement;
end;
statement ::= single-statement | 'begin' statement-list 'end' |
 'null'

for
Syntax is slightly modified and aligned to the ConPro programming lan-
guage. A group of statements requires block environment begin-end. The
loop variable i can be used in expressions within the loop body. Environ-
ment array variables (preceeded with a $) can be iterated in a foreach-
March 29, 2011 17:34External Module Interface EMI - Process Section

54

loop, too.
for i = expr dir expr do
 statement;
foreach $i in $array do
 statement;
dir ::= 'to' | 'downto'
statement = single-statement | 'begin' statement-list 'end'

constant values
Syntax is slightly modified:

 Table 2. Constant Values

process variables
VHDL process variables are defined at the beginning of the process sec-
tion body:
#process:
begin
 variable vname: datatype;
 ...
end;

Expressions
VHDL expressions can contain any VHDL operator (arithmetic, logic, re-
lational, boolean), vector subranges [] and the object selector '''.
+ - * / ...
< > = /= <= >=
and or xor ...
obj[range]
obj'sel
range ::= a 'to' b | a 'downto' b

Process Access and Scheduler
Access of ADT objects requires control and data signals. In the case of data
based objects (for example a queue or RAM), ConPro method calls activate
control signals, and either write to or read from data signals, commonly:

Value Format
Integer DDDD with D={0,1,..,9}

0xXXX with X={0,1,...9,A,..,F}
Bit ‘B’ with B={0,1,Z,H,L,x}

0bB
Bit vector 0bBBB with B={0,1,Z,H,L}

0xXXX with X={0,..,F}
March 29, 2011 17:34 External Module Interface EMI - Process Section

55

Control Signals

T_$O_RE: Read Request Enable
T_$O_WE: Write Request Enable
T_$O_GD: Object Guard

Data Signals
T_$O_RD: Read Data Signal Vector
T_$O_WR: Write Data Signal Vector

In the case of pure control objects (for example a semaphore), only control
signals are activated. Of course for special purpose objects different signals
are required.
Because several ConPro processes can access a shared object, access se-
rialization and blocking of method caller processes are required. If there is
actually already an object access, method call from other processes must
be blocked untill the reosurce is available. For this purpose the gurad signal
is used. As long as the signal is in state '1', the calling process FSM will be
blocked.

Warning and Limitations
Only a subset of VHDL is supported, and there are some adjustments on
syntax level to the ConPro programming language. Mainly, the EMI-lan-
guage is context free. That means that function call arguments are enclosed
in round paranthesis, thereby range expressions (both in signal declarations
and within expressions) are enclosed in bracket paranthesis!

Example

1 TIMER_$O_SCHED: #process
2 begin
3 if $CLK then
4 begin
5 if $RES then
6 begin
7 TIMER_$O_ENABLED <= '0';
8 TIMER_$O_MODE <= '0';
9 TIMER_$O_COUNTER <=
10 to_logic(0,width((max($time)*$clock)/1000000000));
11 TIMER_$O_COUNT <=
12 to_logic((nth($time,1)*$clock)/1000000000,
13 width((max($time)*$clock)/1000000000));
14
15 foreach $p in $P do
16 begin
17 TIMER_$O_$p_GD <= '1';
18 end;
19 foreach $p in $P.await do
20 begin
21 TIMER_$O_$p_LOCKed <= '0';
22 end;
March 29, 2011 17:34External Module Interface EMI - Process Section

56

23 end
24 else
25 begin
26 foreach $p in $P do
27 begin
28 TIMER_$O_$p_GD <= '1';
29 end;
30 if $arch002 = 2 then
31 begin
32 if TIMER_$O_ENABLED = '1' then
33 begin
34 if TIMER_$O_COUNTER =
35 to_logic(0,width((max($time)*$clock)/1000000000))
36 then
37 begin
38 foreach $p in $P.await do
39 begin
40 if TIMER_$O_$p_LOCKed = '1' then
41 begin
42 TIMER_$O_$p_LOCKed <= '0';
43 TIMER_$O_$p_GD <= '0';
44 end;
45 end;
46 if TIMER_$O_MODE = '0' then
47 begin
48 TIMER_$O_COUNTER <= TIMER_$O_COUNT;
49 end
50 else
51 TIMER_$O_ENABLED <= '0';
52 end
53 else
54 begin
55 TIMER_$O_COUNTER <= TIMER_$O_COUNTER - 1;
56 end;
57 end;
58 end;
59
60 sequence
61 begin
62 foreach $p in $P.init do
63 begin
64 if TIMER_$O_$p_INIT = '1' then
65 begin
66 TIMER_$O_COUNTER <=
67 to_logic(0,width((max($time)*$clock)/1000000000));
68 TIMER_$O_COUNT <= to_logic((nth($tim
69 if $arch001 = 1 then
70 begin
71 foreach $p in $P.await do
72 begin
March 29, 2011 17:34 External Module Interface EMI - Process Section

57

73 if TIMER_$O_$p_AWAIT = '1' and TIMER_$O_$p_LOCKed = '0' then
74 begin
75 TIMER_$O_$p_LOCKed <= '1';
76 end;
77 end;
78 end;
79 if $arch001 = 2 then
80 begin
81 if expand($P.await,$p,or,TIME_$O_$p_AWAIT = '1' and
82 TIMER_$O_$p_LOCKed = '0') then
83 begin
84 foreach $p in $P.await do
85 begin
86 if TIMER_$O_$p_AWAIT = '1' then
87 begin
88 TIMER_$O_$p_LOCKed <= '1';
89 end;
90 end;
91 end;
92 end;
93 foreach $p in $P.start do
94 begin
95 if TIMER_$O_$p_START = '1' then
96 begin
97 TIMER_$O_COUNTER <= TIMER_$O_COUNT;
98 TIMER_$O_ENABLED <= '1';
99 TIMER_$O_$p_GD <= '0';
100 end;
101 end;
102 foreach $p in $P.stop do
103 begin
104 if TIMER_$O_$p_STOP = '1' then
105 begin
106 TIMER_$O_COUNTER <=
107 to_logic(0,width((max($time)*$clock)/1000000000));
108 TIMER_$O_ENABLED <= '0';
109 TIMER_$O_$p_GD <= '0';
110 end;
111 end;
112 foreach $p in $P.time do
113 begin
114 if TIMER_$O_$p_TIME_SET = '1' then
115 begin
116 TIMER_$O_$p_GD <= '0';
117 sequence
118 begin
119 foreach $this_time in $time do
120 begin
121 if TIMER_$O_$p_TIME = index($time,$this_time) then
122 TIMER_$O_COUNT <=
March 29, 2011 17:34External Module Interface EMI - Process Section

58

123 to_logic(($this_time*$clock)/1000000000,
124 width((max($time)*$clock)/1000000000));
125 end;
126 end;
127 end;
128 end;
129 foreach $p in $P.mode do
130 begin
131 if TIMER_$O_$p_MODE_SET = '1' then
132 begin
133 TIMER_$O_$p_GD <= '0';
134 TIMER_$O_MODE <= TIMER_$O_$p_MODE;
135 end;
136 end;
137 if $arch002 = 1 then
138 begin
139 if others then
140 begin
141 if TIMER_$O_ENABLED = '1' then
142 begin
143 if TIMER_$O_COUNTER =
144 to_logic(0,width((max($time)*$clock)/1000000000)) then
145 begin
146 foreach $p in $P.await do
147 begin
148 if TIMER_$O_$p_LOCKed = '1' then
149 begin
150 TIMER_$O_$p_LOCKed <= '0';
151 TIMER_$O_$p_GD <= '0';
152 end;
153 end;
154 if TIMER_$O_MODE = '0' then
155 begin
156 TIMER_$O_COUNTER <= TIMER_$O_COUNT;
157 end
158 else
159 TIMER_$O_ENABLED <= '0';
160 end
161 else
162 begin
163 TIMER_$O_COUNTER <= TIMER_$O_COUNTER - 1;
164 end;
165 end;
166 end;
167 end;
168 end;
169 end;
170 end;
March 29, 2011 17:34 External Module Interface EMI - Process Section

59

171 end;

11. Environment

The environment of a EMI module consists of a set of environment variables.
Environment Variables

VHDL expressions can contain environment variables, those names are
preceeded by a $, both on left-hand- and right-hand-side of expressions.
Usually values are assigned in #parameter sections, during object cre-
ation and within #set subsections of #access sections. Environment vari-
ables are always of array type. That means each time a new value is
assigned to an environment variable, a new array element is created an ap-
pended. A scalar read access of a environment variable returns the top of
the array (the last element stored). There are several builtin functions to ac-
cess array elements.

$name
This is the scalar read operation of a environment variable and returns
the first element of the array.

size($array)
Returns number of array elements actually stored in the array.

width($array)
Returns the number of bits required for the encoding of maximum val-
ue in the specified array, assuming weighted binary encoding.

index_width($array)
Returns the number of bits required for the encoding of the index of the
specified array, assuming weighted binary encoding.

index($array,value)
Returns the binary encoded index selector for the specified (unique)
value element contained in the specified array.

nth($array,index)
Returns the n-th element given by index of the specified array.

min($array)
Returns the minimum element from the specified array.

max($array)
Returns the maximum element from the specified array.

Iteration
There is a generic loop construct for the iteration of environment variable ar-
March 29, 2011 17:34External Module Interface EMI - Environment

60

rays:

foreach $a in $A do
begin
 ... $a ...
end;

The loop variable $a, set to an element of the variable array $a, can be used
in expressions and concatenated names inside the loop body.
Abstract objects are accessed by different ConPro processes. There is a
special environmen tvariabl $P which holds informations about all process-
es accessing a particular EMI object. This array (which is indeed a set of ar-
rays with each array related to a particular method) can be used in loop
iterations, too:

foreach $p in $P do
begin
 ... $a ...
 ... X_$a_yyy ...
end;
foreach $p in $P.meth [or $P.meth2 ...] do
begin
 ... $p ...
 ... O_$p_yyy ...
end;

The iteration set can be constructed from different subsets using boolean or
and and operators.
In expressions a set or subset of array elements can be expanded using the
expand operator:

if expand ($P.meth,$p,or,OO_$p_YYY = ‘1’) then
...

This application of the expand operator results in an expression or’ing the
last expression argument by iterating all array elements of the subset
$P.meth.

Printing
During object synthesis informational text lines can be printed to the stan-
dard output channel using the print function. The print function prints a list
of arguments to the standard output channel. The arguments can contain
expressions and environment variables.

#print("Achieved baud rate accuracy [bit/s]: ",
 "[actual = ",$clock / (($clock / (16 * $ARG1))*16),"] ",
 "[requested = ",$ARG1,"] ",
 "[error = ",((($clock / (($clock /
 (16 * $ARG1))*16))*1000)/$ARG1)-1000,
 " %%]");
March 29, 2011 17:34 External Module Interface EMI - Environment

