Concurrent Communicating Sequential Processes

Module CSP

The CSP module of the Lua Virtual Machine (lvm) extends Lua with a concurrent and parallel
process model based on a set of process constructors that can be nested, Among the process
constructors, there is a set of synchronisation objects. Except concurrency, the process constructors
and the channel IPC object matches exactly the process and communication behaviour of the
original CSP model by Hoare (and the syntax of the OCCAM language).

The CSP module supports two levels of parallelism:

1. Threads executing process functions in a separate VM instance. Data can be shared by
different VM instances and processes by a global memory store and data serialisation.
Userdata objects can be shared by reference, all other data is shared by copy.

2. Fibers (coroutines) executing process functions in scheduled fibers in the same VM instance.

Data can be shared by all fibers by reference. There is no parallel execution.

Process Constructors

Seq

Seq(function {}, shared?:{})

Sequential process constructor executing a list of process functions strict sequentially in the current
VM instance. The Seq process terminates if the last sequential process terminates. Following
statements are executed after the Seq process terminates. The Seq constructor is trivial as Lua
statements are already executed strict sequentially. All process functions share the same local and
global scope.

Co

Co(function {3}, shared?:{})

Coroutine process constructor executing a list of process functions pseudo parallel in the current
VM instance. Each process function is executed in a fiber (non-parallel but scheduled processes).
The Co process terminates if the last process terminates, and following statements are executed
after the Co process terminated. All process functions share the same local and global scope.

Par


af://n0
af://n2
af://n10
af://n11
af://n14
af://n17

Par (function {3}, shared?:{})

Parallel process constructor executing a list of process function parallel in different VM instances.
Each process function has its own local and global scope. The Par process performs joining of
(waiting for) all sub-processes and terminates if all parallel sub-processes terminated. Following
statements are executed after the Par process terminated. The process function can access free
variables and functions, but only with a local scope (except user-data tables). All free variables and
functions will be serialised and deserialised in each sub-process.

Fork

Fork(function {3}, shared?:{})

Parallel process constructor executing a list of process function parallel in different VM instances.
The Fork process performs no joining of (waiting for) sub-processes and following statements are
executed immediately. The process function can access free variables and functions, but only with a
local scope (except user-data tables). All free variables and functions will be serialised and
deserialised in each sub-process.

Alt

Alt(processes:function {},shared?:{})
Alt (processes:function {} {},shared?:{})

Alternative choice process constructor executing one of the conditional processes. A conditional
process have to execute a blocking operation, e.g., channel read. The first process that is ready is
executed. Each conditional process is executed in a separate fiber (coroutine).

Interprocess Communication

Interprocess Communication (IPC) is used to synchronise processes for:

1. Cooperation
2. Coordination (competition)

IPC between threads (parallel processes) and fibers (coroutines) has to be distinguished. Thread
IPC blocks entire threads and all contained fibers, whereas fiber IPC only blocks one fiber of a
thread,

Channel

Channel(depth:number, fiber?:boolean) -> channel


af://n20
af://n23
af://n26
af://n34

Creates a new communication channel with the given FIFO depth. A depth = 0 creates an
handshake channel (i.e., reader and writer rendezvous). If the fiber argument is true, a channel for
scheduled coroutines (fibers) is created.

channel:read

channel:read() -> *

Reads data from the channel. If there is no data available, the operation suspends (blocks) the
process execution until data is available.

channel:write

channel:write(data:*)

Writes data to the channel. If the queue is full (or there is no reader for depth=0), the operation
suspends (blocks) the process execution until a read operation is performed.

Mutex

Mutex() -> mutex

Create a mutual exclusion lock.
mutex:lock

mutex:lock()

Acquires and locks a mutex. If the mutex is already locked, the operation suspends (blocks) the
process execution and enqueues the process until the mutex lock is released and the current
process gets the lock.

mutex:unlock

mutex:unlock()

Unlocks a previously acquired mutex lock. If there are waiting processes, the next process is
dequeued and resumed.

Semaphore

Semaphore(init:number, fiber?:boolean) -> semaphore

Create a semaphore object with an initial counter value. If the fiber is set true, a semaphore for
scheduled coroutines is created (cannot be used across parallel processes).


af://n37
af://n40
af://n43
af://n46
af://n49
af://n52

semaphore:down

semaphore:down()

Decrements the semaphore counter value by one. If the semaphore counter is already zero, the
operation enqueues and suspends (blocks) the process until an up operation was performed.

semaphore:up

semaphore:up()

Increments the semaphore counter by one. If there are waiting processes, the next process is
dequeued and resumed.

semaphore:level

semaphore:level() -> number

Return current counter value.

Event

Event(fiber?:boolean) -> event

Create an event object used to synchronise parallel processes or scheduled coroutines (fiber is
true),.

event:await

event:await()

Waits for an event signal. The operation suspends (blocks) the process execution and enqueues the
process until the event was raised by the wakeup operation.

event:wakeup

event:wakeup()

Signals an event and resumes all waiting processes.

Barrier

Barrier(group:number, fiber?:boolean) -> barrier

Create an event object used to synchronise processes

barrier:await


af://n55
af://n58
af://n61
af://n64
af://n67
af://n70
af://n73
af://n76

event:await()

Waits for a group of processes entering the barrier. The operation suspends (blocks) the process
execution and enqueues the process until the last process (i=group) enters the barrier by the await
operation.#

Timer

Timer(interval:number,once:boolean, fiber?:boolean) -> timer

Creates a timer object to synchronise processes temporarily. This timer can only be used in Seq,
Sched , or Alt processes if the fiber argument is set. A fiber timer cannot be shared by Par
processes (only with fiber=nil|false). The timer must be started after creation.

timer:await

timer:await()

Waits for a timer signal. The operation suspends (blocks) the process execution and enqueues the
process until the event was raised by the timer..

timer:start

timer:start()

Starts the timer.
timer:stop

timer:stop()

Stops the timer.
Matrix

Matrix:new(dims:number [],init?:number |function, type?:string) -> matrix
Matrix.double(dims:number [],init?:number |function) -> matrix
Matrix.float(dims:number [],init?:number |function) -> matrix
Matrix.int(dims:number [],init?:number|function) -> matrix

Creates a new shared matrix object (supported dimensions: 1,2,3) that can be accessed in parallel
processes concurrently. Supported data types are: float, double (default), int. Concurrent access is
serialised and protected by a mutex. The index order is i=column (1), i=row,j=column (2), and
i=level j=row,k=column (3).


af://n79
af://n82
af://n85
af://n88
af://n91

matrix:ones

matrix:ones() -> matrix

Assigns value 1 to all diagonal elements of the matrix.
matrix:random

matrix:random(a?,b?) -> matrix

Assigns random values to all elements of the matrix (default in the range 0,1, or alternatively in
range a,b).

matrix:print

matrix:print(format?:string) -> string

Formatted printer (default format "%2.2f").
matrix:read

matrix:read(i, j, k) -> number

Reads the value of an element of the matrix.
matrix:write

matrix:write(value:number, i, j, k)

Writes new value to an element of the matrix.

Examples

require('Csp')
local counter=1

Seq({
function () counter=counter+1 end,

function () counter=counter+1 end

1)

print('Waiting for counter='..counter)
Seq Constructor Example
require('Csp')

Par({
function (id)


af://n142
af://n132
af://n154
af://n94
af://n97
af://n100

log('Process A starting');
local x=ch:read();
log('hello '..x);

end,

function (id)
ch:write('world');

end

A
ch=Channel(0)

1)
print('wWaiting ..")

Par Constructor Example

require('Csp')
Par({
function (id)
local x
Alt({
function () print(1); x=chl:read(); print('got chl1') end,
function () print(2); x=ch2:read(); print('got ch2') end,
1)
log('hello '..x);
end,
function (id)
ch2:write('world"');
end
A
chi=Channel(1),
ch2=Channel(1),

1)

Alt Constructor Example

require('Csp')
local sema = Semaphore(0)

Par (
{function (pid)
Seq({
function (pid2) sema:down(); print('1.1 hello pid='..pid..'.'..pid2)
end,
function (pid2) print('1.2 hello pid='..pid..'.'..pid2) end
1)
end,

function (pid)



Par({

function (pid2) sema:up(); print ('2.1 hello pid='..pid..'.'..pid2)
end,
function (pid2) print ('2.2 hello pid='..pid..'.'..pid2) end
1)
end}, {
1)
print('wWaiting .."')
Semaphore Example
require('Csp')
Fork(
{function (pid)
Seq({
function (pid2) print('1.1 hello pid='..pid..'.'..pid2) end,
function (pid2) print('1.2 hello pid='..pid..'.'..pid2) end
1)
end,
function (pid)
Par({
function (pid2) print ('2.1 hello pid='..pid..'.'..pid2) end,
function (pid2) print ('2.2 hello pid='..pid..'.'..pid2) end
1)
end}, {
1)

print('Not waiting .."')
loop.start()

Fork Example

Meta Data

Stefan Bosse
24.5.2019

Author:
version:


af://n111

	Concurrent Communicating Sequential Processes
	Module CSP
	Process Constructors
	Seq
	Co
	Par
	Fork
	Alt

	Interprocess Communication
	Channel
	channel:read
	channel:write
	Mutex
	mutex:lock
	mutex:unlock
	Semaphore
	semaphore:down
	semaphore:up
	semaphore:level
	Event
	event:await
	event:wakeup
	Barrier
	barrier:await
	Timer
	timer:await
	timer:start
	timer:stop
	Matrix
	matrix:ones
	matrix:random
	matrix:print
	matrix:read
	matrix:write

	Examples
	Meta Data


