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Abstract. The main objective of this work is the transition of destructive material test-
ing towards non-destructive testing methods and the investigation of predictor functions
derived by Machine learning applied to destructive testing methods like tensile tests.
The output provides information about the material state and damages in advance, i.e.,
dealing with functionals f(x): x → y, where x is the strain (length) and y the stress
(load force) variable. The scope of this work focuses on learning of predictor functions
by using simple commonly used stateless forward and state-based recurrent neural net-
works providing two outputs separately: (1) The prediction of damage events by past
recorded data with functions of the form f(Y0): Y0 → xdam, where Y is a data point
series of the load force (stress) variable y, and (2) The prediction of two-dimensional
data point series (e.g., strain-stress curves) with functions of the form fΔ(Y): Y → YΔ
and the aim to predict (extrapolate) the development of the function for a progressive
difference Δx of the strain variable. I.e., we derive new function sets FF{f1,..,fn} from
training data to predict the material behaviour and state transitions (e.g., from elastic to
plastic behaviour).

Keywords. Non-destructive Testing, Measuring curve peediction, Recurrent state-based
Neural Networks

1. Introduction

There is an emerging field of new materials, including, but not limited to, fibre-metal
laminates, foam materials, and materials processed by additive manufacturing, highly
related to a broad range of applications. Typically, material properties such as yield
strength, inelastic behaviour, and damage points are determined from tensile tests.

The main disadvantage of tensile testing is the irreversible modification of the device
under test (only one experiment possible!). We develop and investigate the training of
approximating predictor functions by Machine Learning (ML) and simple Artificial
Neural Networks (ANN) for inelastic and fatigue prediction by history recorded data.
The predictor functions should be able to predict irreversible effects like inelastic (plas-
tic) behaviour and material damage by data measured from simple tensile tests within
the elastic range of the materials.
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We show some preliminary results from data from tensile test experiments and outline
the challenges to derive such predictor functions by using artificial neural networks and
Long-short-term Memory cells (LSTM). In time-series and data-series prediction, the
neural network is activated by a linearised sequence of sensor samples measured either
from laboratory tensile tests or by using strain-gauge and force sensors at run-time.
The predictor functions outputs an extrapolation of the development of the measured
variables (e.g., tensile load force, stress with respect to crosssectional area).

Tensile tests (TT) are used to characterise material properties like yield criterion and
the work hardening parameters to be identified, the maximal strength, elastic and non-
elastic behaviour [3]. Commonly, a TT modifies the device under test (DUT) irreversi-
ble (destructive method). Only one test for each sample is possible! Non-elastic (plas-
tic) behaviour and damage can only be detected from data measured in the past (the
event happened). New hybrid and syntactic foam materials pose non-linear and unex-
pected behaviour hard to model on functional level.

This work investigates predictor functions for damage prediction and multi-step ahead
data point series prediction derived originally from time-series prediction [5]. Artificial
neural networks (ANN) are suitable models for time-series predictor functions [4] by
using networks with a feedback loop from neuron outputs to input edges of neurons of
the same or a previous layer, i.e., recurrent neural networks (RNN). This feedback in-
troduces state (memory). The commonly deployed gradient-based training of simple re-
current networks is difficult due to exploding gradients. Instead, more advanced archi-
tectures with gating are utilised, e.g., Long-short term memory cells (LSTM). Typically
the time domain is the series ordering variable, but any discretisable variable can be
the ordering variable, e.g., the measured strain length of a tensile test. This leads to the
more general data series prediction. But data series prediction can be performed with
feed forward networks, too [8]. Both approaches are compared in this work,

The prediction of the plastic material behaviour in advance should be possible by sen-
sor data from load tests acquired within the elastic material range only. The prediction
of the damage point should be possible sensor data from load tests acquired within the
first segment mainly consisting of the elastic range and the beginning of the first plastic
segment.

The following sections introduce the methods, the model networks, the training and test
techniques, followed by a discussion of analysis results from tensile tests.

2. Aims and Methods

Data Series Processing.

It is assumed that there are experimental methods or measuring techniques that produce
a series of sensor data points related to the time, spatial, or any other physical domain.
There are two different methods applied in this work to process sensor data series:
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• RNN: Sequentially using state-based recurrent artificial neural network;

• FFNN: In parallel using feed forward artificial neural networks.

Both network architectures and data processing methodologies are compared in Fig. 1.
The sequentially activated state-based network (commonly using Long-short term
memory cells) is used for data series prediction. The parallel activated feed forward
network is used to predict a damage feature.
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Fig. 1. Sequential versa parallel processing of data points of measured sensor data
series

Damage prediction.

The first approach discussed in this work utilizes data points from tensile tests within
the first segment (basically the elastic and the beginning of the first plastic range).
From this first segment a small number (< 20) of feature points is extracted and used
to predict the strain length xdam where the specimen will break (fatal damage). This
point is defined by a rapid decrease of the load force towards zero.
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Fig. 2. Damage point prediction (strain length x) from measured data of the first seg-
ments of the strain-stress diagram from tensile tests

Material behaviour prediction.

The second approach utilizes data point series prediction to recognize material state
transitions like the transition from elastic to plastic material behaviour in advance. This
requires an accurate prediction of the strain-stress (or strain length and load force)
functions of a specific specimen. The entire strain-stress curve of a specimen is derived
from data series of <x,y> tuples where x is the strain length and y the load force vari-
able.

Learning a set of predictor model functions FF{f1,..,fn} with fδ(Y): Y → Yδ with Yδ ⊃ Y
from strain-stress curves requires state-based predictor functions. There is
Y={y1,y2,..yi}. One common model is a recurrent artificial neural network with Long-
short term memory cells (LSTM), already successfully deployed in data point series
prediction for damage event diagnostics [1] [4].

Y is a series of equally spaced y-values {y1,..,yn} with respect to the x variable, and Yδ
is a shifted series {y1+δ,..,yn+δ}.

The trained models can be used to predict the future development based on past data
of:

1. The stress (load forces) acting on the sample related to the observed strain;
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2. The strain (length) related to observed stress or measuresd load forces (inverse
problem).

Fig. 3. A typical measured strain-stress curve from a tensile test (blue line) and for-
ward predictions (red line segments) xi+δ

Each predictor function F of the set FF is able to predict the target variable at i+δ steps
ahead assuming a descritization using the past target variable values (measured), i.e.,

∀δ ∈ {1, 2, ..,m} : y(i+ δ) = Fδ(y0, y1, .., yi)

performing an extrapolation of the function for future function values:

(1)

Input and output neurons of continuous predictor functions uses typically a sigmoid ac-
tivation function to provide a nearby linear transmission in the desired output range.

3. Experimental Data

The following experiments were carried out with data from tensile test made with
aluminium sheets (approx. 5x12x1 mm size). There are three series of specimens
(Fraunhofer IFAM, Lehmhus et al.). A reference series R, and two thermally treated
specimens with the series F and T. The samples of the series F and series T are made
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of heat treated 7075 aluminium sheets. In the case of series F, the sheets were
quenched directly after pouring in 20 °C warm water. After quenching and an aging
process at room temperature, the series-T was again thermally temperature-controlled at
170 °C for 8 days. The aluminium sheets of the reference series have not undergone
any thermal treatment. The plates of the individual series were clamped at different
angles during the tensile tests in order to achieve a variance.

One main issues with data sets from tensile test is the low degree of variance. Typical-
ly, the (labelled) data set is split in training and test sub-sets.

Data Normalization and Augmentation.

Data series prediction uses commonly series of data tuples <x,y>, e.g., with x=t (time
variable). The prediction is applied only to a sequence of y values. In this work, the
ordering variable x is a sensor variable from the tensile test (strain length), and y is the
target variable to be predicted (load force or stress). The original sensor data series
must be linearised with respect to the x variable, i.e., the final data series contains only
equally spaced force values with respect to the measured strain length, i.e., a constant
Δx(yi,yi+1)=δ

The synthetic data augmentation is a possibility to generate additional data sets from a
few measured data sets, typically the situation in tensile test experiments. The first con-
sideration is simply to stretch or compress one or more existing curves linearly on the
force axis. This approach leads to a too small variation of the synthetic data. Monte
Carlo simulation can add randomness to measured data and can extend the training
data base significantly. This method is an established method to avoid the trend to
specialisation of predictor functions during training.

The second approach uses the consideration of a weighted averaging of two or more
curves to generate new data series. This can vary due to the different weighting of the
respective curves. Thus, it is possible to generate infinitely many new synthetic
curves.[7] to do this, a "Dynamic Time Warping" (DTW) path is generated from two
random curves, which is then used to average the points of the two curves assigned to
each other. The DTW path is constructed as an Array of tuples, where the first element
of the tuple is the point of the first curve and the second element is the associated
point from the second curve [6].

4. Predictor Functions and Models

Predictor functions can be modelled using mathematical functions or using ANN to ap-
proximate these functions. A modified Neataptic ML framework was used to imple-
ment FFNN and LSTM-RNN and to perform training and prediction [9].

Feed Forward Networks.
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For the damage point prediction a parallel activated ANN is used approximating the
hypothesis function f(y0,..yn): y → xdam consists of n (e.g., n=18) input neurons (each
connected with one of the data points from the load force variable y), one ore more
inner layers, and one output neuron. Good prediction results were achieved with the
neuron-layer configuration [n:7:3:1]. I.e., the first n down sampled data points
{y1,y2,..,yn} are used to predict the distance xdam to a data point related with the dam-
age (break) event.

Alternatively a sequentially activated recurrent ANN with memory cells is used for
comparison. The architecture is discussed in the next section.

Recurrent Networks.

Another aim of this work is to derive a predictor function that is able to predict a
curve trace in advance for a given number of steps (delta of the input variable relative
to the output variable). Extrapolation requires either a fitted function model, i.e., solv-
ing a regression problem, or state-based model that remembers and recognizes typical
curve trace segments to give an approximation of the extrapolation of these segments.
Regression by function fitting results typically in specialized model. More generalized
models can be approximated in a more straight forward way by state-based ANN well
known for time-series prediction.

The ANN consists of an input layer (only one neuron), a hidden LSTM layer (or
more), and one output layer (only one neuron). The input variable of the network is a
sequence of y values, i.e., measured forces. The output variable of the network is the
predicted y value for a future x point.

The hidden layer consists of LSTM cells which are connected with the previous and
next layer (optional connection between MC in same layer). The sequence samples
must be normalized (equally spaced) with respect to the also measured strain length x!

The memory cell of the LSTM is connected to several gates. The gates control connec-
tion weights dynamically (like a valve). There are different optional LSTM network
configuration effecting the interconnection of LSTM cells with each other.

7



Stefan Bosse, Edgar Kalwait - ECSA 2020, MDPI

Fig. 4. The sequentially activated LSTM-RNN implementing the predictor functions fΔ
to predict material behaviour and state transitions

Different network configurations were tested. Finally, a LSTM cell chain with a hor-
izontally linear configuration [1:1:1:1:1:1:1:1:1:1:1:1] with one input, one output neu-
ron, and a chain of n=10 connected LSTM cells were chosen for the generalised yδ
variable prediction (supporting a broad range of material variations). Another approach
for a specialised predictor function (supporting only one specimen class) used a verti-
cally expanded configuration, e.g., [1:3:4:1].

5. Training and Test

Experimental Data.

The original raw experimental data from the tensile tests were pre-processed by x-
variable normalisation, augmentation by Monte Carlo simulation and dynamic eime
warping techniques, and finally y-variable normalisation to the value range [0,1].

Feed Forward Network.

The FFNN was trained with a sequence of randomly selected of training examples by
using a classical gradient based error back propagation algorithm. The test was per-
formed with respect to the target output variable xdam compared with the value com-
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puted numerical from the full tensil test curve.

Recurrent Network.

The RNN were trained with a sequence of randomly selected training examples. In the
case of the damage point target variable, all data points of a sequence (down sampled
to only a few points, n < 100) activated the RNN sequentially. After activation, an error
backpropagation step was performed (comparing actual and target output value). The
data point series prediction y(x+i) uses a single data point activation with immediate er-
ror back propagation. The test was performed with all data sets by comparing the
predicted with the real output values.

6. Results

The trained predictor functions are evaluated with respect to the two target variables
damage point and load force series prediction.

Damage prediction.

Forward Parallel Network.

The in parallel activated FFNN shows a high accuracy of the damage point prediction
with low variance. The training was performed (1) With a random 1:1 split of training
and test data from the entire data set consisting of 3 different series, and (2) with all
experiments. The test was performed with all experiments. The average accuracy is in
both cases about 9% (max.: 30%, σ=7%). Results are shown in Fi.g 5.
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Fig. 5. Prediction results for the damage length point xdam of different specimens and
series using an in parallel activated feed forward network

Recurrent Sequential Network.

the same test and the same training data was made with a sequentially activated
LSTM-RNN, too. This method shows low avergae accuracy about 15% not suitable to
predict the damage point. Results are shown in Fi.g 6.

10



Stefan Bosse, Edgar Kalwait - ECSA 2020, MDPI

������ � ������ � ������ �

�	
�

Fig. 6. Prediction results for the damage length point xdam of different specimens and
series using a sequentially activated LSTM-RNN network

Material behaviour prediction.

TT from 42 experiments of metal sheets with different thermal preparation were used
as input data for training and testing of the LSTM-RNN predictor function.

Example plots of measured (red line) and predicted x-y curves (green line) for different
specimens and series is shown in Fig 7. The predictor function was trained with data
from all series and using all experiments of each series.

The maximal prediction error of the predictor function for δ=25 (about 3%, equal to
25μm) sample points (full scale of measurement ranges between 700 and 1400 points)
is below 10%, with an average of less than 5%. The prediction deviates more strongly
in curve segments with a high gradient (with spikes, too).

Higher number of hidden LSTM layers can improve prediction accuracy. Although the
error between the original and the predicted strain-force curves is lower than 10%, the
predicted curves tend to be delayed (positive shift on x-axis) and it is difficult to
predict the beginning of the inelastic material behaviour in the elastic segment. This a
result from the short elastic segment compared with the long inelastic segment, too.
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Fig. 7. Results from the material strain-stress behaviour prediction of different speci-
mens and series using a sequentially activated chain LSTM-RNN network with δ=25μm
(equal to 25 data points)

In Fig. 8 samples of prediction results are shown with training and prediction using
only one series R with different model network configurations and without data aug-
mentation. In contrast to the models trained by all specimens and over all series (previ-
ous results), this limitation to a specific series enables the detection of the beginning of
the plastic segment with data taken from the elastic range. The predicted curves in Fig.
8 do not pose the prediction lag from the previous curve predictions. But a proper
design of the network architecture is eminent for accurate predictions.
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Fig. 8. Results from the material strain-stress behaviour prediction of one specimen
from series R using a sequentially LSTM-RNN network with δ=10 data points (approx.
25μm) and different model netwrok configurations [6]

7. Conclusion

Simple forward and recurrent neural networks are evaluated for learning functions for
predicting the future development of material behaviour under load conditions, i.e.,
prediction of damage points (by estimating the strain length where the damage will oc-
cur) and material state transitions like elastic to inelastic material behaviour based on
past measured force and strain length value sequences (mostly in the elastic material
range). A classical in parallel activated feed forward network was able to predict the
damage point by the first segment of data points of the strain-stress curve with a high
accuracy. The network was activated by the data points in parallel. Despite the com-
mon understanding that RNN-LSTM are suitable candidate models for time and data
point series prediction, they could not be trained successfully to predict damage points
and material state transitions in a general way (covering different material and speci-
men properties by one model). Here the data points activate the network sequentially.
Specialized models limited to specific specimen, material and treatment parameters
were in principle able to predict the plastic material behaviour with data points from
the elastic segment.
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