Proc. of the EUSPN 2015
DOI:10.1016/j.procs.2015.08.312 Procedia Computer Science, Elsevier

6th International Conference on Emerging Ubiquitous Systems and Pervasive Networks, EUSPN-
2015

Unified Distributed Computing and Co-ordination in Pervasive/Ubiqui-
tous Networks with Mobile Multi-Agent Systems using a Modular and
Portable Agent Code Processing Platform

Stefan Bosse

University of Bremen, Department of Mathematics & Computer Science, Bremen, Germany

Abstract A novel and unified approach for reliable distributed and parallel computing using mobile agents is introduced. The
agents can be deployed in large scale and hierarchical network environments crossing barriers transparently. The networks can
consist of high- and low-resource nodes ranging from generic computers to microchips, and the supported network classes range
from body area networks to the Internet including any kind of sensor and ambient network. Agents are represented by mobile pro-
gram code that can be modified at run-time. The presented approach enables the development of sensor clouds and smart systems
of the future integrated in daily use computing environments and the Internet. Agents can migrate between different hardware and
software platforms by migrating the program code of the agent, embedding the state and the data of an agent, too. The entire infor-
mation exchange and coordination of agents with other agents and the environment is performed by using a tuple space database.
Beside architecture specific hardware and software implementations of the agent processing platform, there is a JavaScript (JS) im-
plementation layered on the top of a distributed management layer. The JS platform enables the integration of Multi-agent Systems
(MAS) in Internet server and application environments (e.g., WEB browser). Agents can migrate transparently between hardware-
level sensor networks and WEB browser applications or network servers and vice versa without any transformation required.

Keywords: Sensor Networks, Cloud Computing, Mobile Agents, Heterogeneous Networks, Embedded Systems, Agent Processing Platform

1. Introduction

Trends emerging in engineering and micro-system applications such as the development of sensorial materials
composed of high-density miniaturized active sensors pushes the Internet-of-Things, requiring distributed autono-
mous computing in large-scale heterogeneous networks consisting not only of miniaturized low-power smart sensors
embedded in technical structures. Large scale sensor networks with hundreds and thousands of sensor nodes inte-
grated in cloud-based service environments require data processing concepts far beyond the traditional centralized
approaches. Multi-Agent systems (MAS) can be used to implement smart and optimized sensor data processing in
these distributed sensor networks [1][7] and information distribution across network domains. The MAS paradigm
offers a unified data processing and communication model suitable to be employed, e.g., in the design, the manufac-
turing, and the logistics of products, and the products themselves (e.g., robots).

Agents are already deployed successfully for scheduling tasks in production and manufacturing processes [5], and
newer trends poses the suitability of distributed agent-based systems for the control of manufacturing processes [6],
facing not only manufacturing, but maintenance, evolvable assembly systems, quality control, and energy manage-
ment aspects, finally introducing the paradigm of industrial agents meeting the requirements of modern industrial
applications by integrating sensor networks. Multi-agent systems can be successfully deployed in sensing applica-
tions, e.g., structural load and health monitoring, with a partition in off- and online computations [3]. Distributed data
mining and Map-Reduce algorithms are well suited for self-organizing MAS. Cloud-based computing with MAS, as
a base for cloud-based manufacturing, means the virtualization of resources, i.e., storage, processing platforms, sens-
ing data or generic information.

Stefan Bosse -1- 2015

Proc. of the EUSPN 2015
DOI:10.1016/j.procs.2015.08.312 Procedia Computer Science, Elsevier

The scalability of complex industrial applications using such large-scale cloud-based and wide area distributed
networks deals with systems deploying thousands up to million agents. But the majority of current laboratory proto-
types of MAS deal with less than 1000 agents [6]. Currently, many traditional processing platforms cannot yet
handle big number of agents with the robustness and efficiency required by the industry [6]. In the past decade the
capabilities and the scalability of agent-based systems have increased substantially, especially addressing efficient
processing of mobile agents. The integration of sensor networks in generic computer networks and the Internet raises
communication and operational barriers which must be overcome by a unified agent processing architecture and
framework, discussed in this work.

A sensor network is composed of nodes capable of sensor processing and communication. Smart systems are com-
posed of more complex networks (and networks of networks) differing significantly in computational power and
available resources, rising inter-connectivity barriers. They provide higher level information processing that maps the
raw sensor data to condensed information. They can provide, e.g., Internet connectivity of perceptive systems (body
area networks...). These smart systems unite the traditionally separated sensing, aggregation, and application layers,
offering a more unified design approach and more generic and unified architectures. Smart systems glue software and
hardware components to an extended operational unit.

Growing system complexity requires an increase in the autonomy feature of distributed data processing systems,
addressed, e.g., by the deployment of mobile Multi-agent systems carrying out information processing and context-
based distribution. Self-organizing systems are one major approach to solve complex tasks by decomposing them into
smaller and simpler tasks performed by a large group of individuals [8].

A cloud in terms of data processing and computation is characterized by and composed of: A parallel and distrib-
uted system architecture, a collection of interconnected virtualized computing entities that are dynamically
provisioned, a unified computing environment and unified computing resources based on a service-level architecture,
and a dynamic reconfiguration capability of the virtualized resources (computing, storage, connectivity and net-
works). Cloud-based design and manufacturing is composed of knowledge management, collaborative design, and
distributed manufacturing. Adaptive design and manufacturing enhanced with perception delivered by the products
incorporates finally the products in the cloud-based design and manufacturing process.

The central approach in this work focuses on mobile agents and the ability to support mobile code embedding the
agent behaviour, the agent data, the agent configuration, and the current agent control state, finally encapsulated in
code frames. This agent-specific mobile program code can be executed on a variety of different platforms ranging
from microchip (System-on-Chip) hardware to generic software levels, now including a JavaScript and WEB
browser capable platform implementation with a distributed co-ordination / management layer and a broker service
for IP client-side only applications. This extends the scope and visibility of sensing devices and sensor networks to
the Internet domain and enables cloud computing in strong heterogeneous networks.

In the following sections the deployment and processing of mobile agents in heterogeneous large-scale network
environments is discussed from a top-down perspective giving an outline of the architecture layers.

2. The Activity-based Agent Behaviour and the AAPL Programming Model

The implementation of mobile multi-agent systems with a particular focus on resource constrained embedded sys-

tems (microchip level) is a complex design challenge. High-level agent programming and behaviour modelling
languages can aid to solve this design issue. Activity-based agent models can aid to carry out multi-agent systems on
hardware platforms [1]. The behaviour of an activity-based agent is characterized by an agent state, which is changed
by activities. Activities perform perception, plan actions, and execute actions modifying the control and data state of
the agent. Activities and transitions between activities are represented by an activity-transition graph (ATG). The
Activity-Graph Agent Programming Language A4PL [1] was designed to offer the modelling of the agent behaviour
on programming level, defining activities with procedural statements and transitions between activities with condi-
tional expressions (predicates) based on agent data. Though the imperative programming model is quite simple and
closer to a traditional programming language it can be used as a common source and intermediate representation for
different agent processing platform implementations (hardware, software, simulation) by using a high-level synthesis
approach.
There is a multi-agent system (MAS) consisting of a set of individual agents {A;, Ay, ..}. There is a set of different agent behav-
iours, called classes C={AC;, AC,,..}. An agent belongs to one class. In a specific situation an agent A; is bound to and processed
on a network node N (e.g. microchip, computer, virtual simulation node) at a unique spatial location . There is a set of different
nodes N={N,, N,, ..} arranged in networks with peer-to-peer neighbour connectivity (e.g., a two-dimensional grid). Each node is
capable to process a number of agents n,(AC;) belonging to one agent behaviour class AC;, and supporting at least a subset of C’
< C. An agent (or at least its state) can migrate to a neighbour node where it continues working.

Stefan Bosse -2- 2015

Proc. of the EUSPN 2015

DOI:10.1016/j.procs.2015.08.312 Procedia Computer Science, Elsevier
Programming Level Network
AAPL Definition | momee ey Instantiation
| et € - e
agent AC (val p1,p2,.:type) = (p1,p2,p3) - prem— Node e Node
var X\y,z,.: type; ... — | |Statement I2 Trans. 1-2
var* xy,z,..: type; ... Data | Statementlls — ut > — out
typet={ABC.) .. VARG 2 ‘\I — o Moveto | e
signal S:type; ... —— Memory —] = |Memory —
activity al = statements end; Types ? Statement I1 =(_)¢“ Database| send =<_)¢“ Database
activity a2 = statements end: .. TYPEt= .. Trans. 1-3- Cond Siatement’ M— R in M— A i
handler S(p) = statements end; .. |[L— CHER7 S D < s
fransitions = a1 > a2 L cond. [Fandiers | Trans, 2-3: Cond g
. co ! ﬁ S 11 e
end; et e @)
Statement 13 | Statement I3 (=)

Fig. 1. Agent behaviour programming level with activities and transitions (44PL, left); agent class model and activity-transition
graphs (middle); agent instantiation, processing, and agent interaction on the network node level (right).

Therefore, the agent behaviour and the action modifying the environment is encapsulated in agent classes, with
activities {a;,a,,..} representing the control state of the agent reasoning engine, and conditional transitions {¢,t,,..}
connecting and enabling activities. Activities provide a procedural agent processing by a sequential execution of
imperative data processing and control statements. Agents can be instantiated from a specific class at run-time. A
multi-agent system composed of different agent classes enables the factorization of an overall global task in sub-
tasks, with the objective of decomposing the resolution of a large problem into agents in which they communicate
and cooperate with one other.

The activity-graph based agent model is attractive due to the proximity to the finite-state machine model, which
simplifies the hardware implementation. An activity is activated by a transition depending on the evaluation of (pri-
vate) agent data (conditional transition) related to a part of the agents belief in terms of BDI architectures, or using
unconditional transitions (providing sequential composition), shown in Fig. 1. Each agent belongs to a specific
parameterizable agent class AC, specifying local agent data (only visible for the agent itself), types, signals, activities,
signal handlers, and transitions.

Instantiation. The AAPL programming language (detailed description in [1] and [2]) offers statements for parame-
terized agent instantiation, like the creation of new agents and the forking of child agents, using the new(args) and
fork(args) statements, respectively.

Modification. There are statements enabling the modification of the agent behaviour at run-time applied to the ATG.
ATG transitions can be added, deleted, or replaced by the transition® (q;, aj, cond) operation. New classes can be
composed of activities by using these and activity®’(ay,a,,..) statements, with op={+,-,*}.

Mobility. Agent mobility is offered by migration using the moveto(dst) statement specifying a cartesian direction
(distance vector) or a destination node identifier. Only migration to a neighbour node is provided, though neighbour-
hood can be based on physical or logical connectivity (e.g., in the Internet domain).

Interaction. Agent interaction is offered by coordinated Linda-like tuple database space access and signal propaga-
tion (messages carrying simple data delivered to asynchronous executed signal handlers). Access of the tuple space
is granted by using in(TP), rd(TP), rm(TP), exist?(TP) and out(T), mark(timeout,T) primitives (T: n-dimen-
sional tuple with actual parameters, TP: n-dimensional tuple with actual and formal patterns). The in/rd/rm
operations extract tuples from the database based on pattern matching. The out operation stores tuples in the database
(generating persistent tuples), whereby the mark operation assigns a time-out flag to the tuple that enables the
destruction of the tuple by a garbage collector if the time-out is reached (generating temporary tuples). A Remote-
Procedure Call operation is supported by the eval(TP) primitive that stores a partially evaluated tuple in the data-
base that is consumed by a service agent, processing it and returning the fully evaluated tuple to the database again,
which is finally passed to the original client evaluation call. A signal sig can be sent to an agent with the identifier id
by using the send(id, sig,arg) statement. Signals are mostly used in parent-child agent coordination.

Stefan Bosse -3- 2015

Proc. of the EUSPN 2015
DOI:10.1016/j.procs.2015.08.312 Procedia Computer Science, Elsevier

3. The Network Architecture

The agent processing platform architecture itself does not require any distributed coordination and management
layer to be operational. But in the context of basically loosely coupled and highly dynamic network environments like
the Internet coordination, logical (virtual) connectivity management, and structuring is required to provide meaning-
ful environments for agent mobility in terms of tasks and goals to be fulfilled by agents. The basic global and
distributed coordination and management for the agent processing and mobility is provided by a capability-based
RPC layer with some dedicated services like a file and directory naming service, discussed in the following subsec-
tions. The distributed management and coordination layer bases on previous work discussed in [9].

A global distributed coordination layer including a file and naming service is not required for the processing of
mobile agents in low-distance and directly connected networks, e.g., considering sensor networks embedded in tech-
nical structures or deployed in wearable computing use cases. In these networks the physical network topology
represents the communication network topology, and the agent mobility relies on the provided (and approximately
static) neighbourhood connectivity of network nodes.

3.1. Capability based RPC

Object-orientated Remote Procedure Calls (RPC) are initiated by a client process with a transaction operation, and
serviced by a server process by a pair of get-request and put-reply operations, based on the 4moeba DOS [4]. Trans-
actions are encapsulated in messages and can be transferred between a network nodes. The server is specified by a
unique port, and the object to be accessed by a private structure containing the object number (managed by the
server), a right permission field specifying authorized operations on the object, and a second port protecting the rights
field against manipulation (see [4] for details). All parts are merged in a capability structure [srvport]
obj(rights)[protport].

3.2. AFS: Atomic File System Service

The Atomic File System Server (4FS) provides a unified and reliable file system storage suitable for the deploy-
ment in unreliable environments and is independent form lower level storage capabilities. Files are associated with a
capability. The capability port is given by the server, and the capability object number identifies the file uniquely.
The protected rights field of the capability determines the authorized operations to be applied to a file or the file sys-
tem. A file is stored always in a contiguous block cluster of the file system, avoiding a linked free and used block
management that offers a low-resource and low-overhead file system with basic real-time feature capabilities. A
committed file is immutable (locked, read-only mode) and occupies only one internal node (i-node). Modification of
locked files require an uncommitted (unlocked) copy of the original immutable file. Though this approach seems to
be inefficient for post modifications of files, it avoids the requirement of file system logging required for a fast crash
recovery. Here, after a crash only uncommitted files (occupying only one i-node) must be cleared. The AF'S is used in
this work mainly for storing agent program code and persistent tuple space data. The simplicity of the AF'S enables
the implementation in JavaScript and the embedding in browser applications, discussed in the next section.

The set of operations embraces the reading, modification, commitment, creation, and destruction of files. Each file
object has a limited lifetime that is decremented periodically by a garbage collector that removes unused entries.
Therefore, there is a touch and age operation modifying the lifetime of a file. Only the explicit commitment of a file
makes the file persistent. Reading data from and writing data to storage devices is performed through a cache module,
speeding up reading and modifying of file data and i-nodes.

3.3. DNS: Directory and Name Mapping Service

The Directory and Name Server (DNS) provides a mapping of names (strings) on capability sets, organized in
directories. A directory is a capability-related object, too, and hence can be organized in graph structures. A capabil-
ity set binds multiple capabilities associated with the same semantic object, e.g., a file that is replicated on multiple
file servers. A capability set marks one object capability as the current and reachable object, though this may change
any time. A directory is associated with an internal node and the content table (the rows). The directory content is
stored in an AF'S file. Redundancy is offered by the capability sets themselves (replication of objects) and by the DNS
using two file servers for storing directories in two-copy mode (replication of directories). The immutability of AF'S
files immediately qualifies the immutability of directories, enabling a robust directory system with a fast an stable
recovery after a server crash. The simplicity of the DNS enables the implementation in JavaScript and the embedding
in browser applications, too, discussed in the next section.

Stefan Bosse -4 - 2015

Proc. of the EUSPN 2015
DOI:10.1016/j.procs.2015.08.312 Procedia Computer Science, Elsevier

Network Message 192.168.0.23

Agent Program r 1 Q
Broke r [o S
HTTP/IP Server Port EI] 1
@ = H' H Private Network [
= - == Firewall

212 98.19.10.
178.10.23.42
> — L

Node

T
i)
8
[
2
f)
8
m
z
o
Q
m

178.10.23.45

Network

|Domain C
bd B IRt
134.102.219.1 |
- | fez}
Node |20 Firewall / I
Private === — I
|

134.102.219.4

192.168.0.23 Browser

—1_
|
. |
) N~
I
I
I
I
I
|
|
|
2|
-
|

| [~
| |
! |
i DNS: | H, |
r__‘_____4 —————— b /domains/A/B1 | I == |
| : /B1/AFS || |
AFVM AFVM /DNS |
I] { I /RUN I
||
: - | AFS [DNs 1[RO : /83 [: :
| &=—{CACHE] | RPC I /c1 | Domain A |
I - [Router /C1/RUN |\ m———— - - —
| /c2
I | HTTP I 7c3 | (—T— e
I (Task Scheduler | /domains/B/CL I g+ |1
I JavaScript Interpreter I /c2 | 1==5) | | |
- — o ' | I
node.js rowser .
|Host — =B ———— = —— J /B5 ILDomaln B I JI I
/domain/C/B5 ____________r___ I
I'm'l |
I == I
IDomain C |

Fig. 2. Different agent processing platforms and nodes are connected in Inter-, Intranet, and dedicated Sensor network domains
including hardware nodes (embedded and microchip level platform implementations). Broker servers are used to connect IP cli-
ent-only applications (e.g., browser applications or nodes in private networks).

The set of operations embraces the reading, modification, creation, and destruction of directories. Each directory
has a limited lifetime that is decremented periodically by a garbage collector that removes unused entries that are not
linked anymore. Therefore, there is a touch and age operation modifying the lifetime of a directory.

3.4. Broker Service

The integration and network connectivity of client-side application programs like Web browsers as an active agent
processing platform requires client-to-client communication capabilities, which is offered in this work by a broker
server that is visible in the Internet or Intranet domain, shown in Fig. 2. To provide compatibility with and among all
existing browser, node.js server-side, and client-side applications, a RPC based inter-process communication encap-
sulated in HTTP messages exchanged with the broker server operating as a router was invented. Client applications
communicate with the broker by using the generic HTTP client protocol and the GET and PUT operations. RPC mes-
sages are encapsulated in HTTP requests. If there is a RPC server request passed to the broker, the broker will cache
the request until another client-side host performs a matching transaction to this server port. The transaction is passed
to the original RPC server host in the reply of a HTTP GET operation.

But the deployment of one central broker server introduces a single-point-of-failure and is limiting the communi-
cation bandwidth and the scaling capability significantly. To overcome these limitations, a hierarchical broker server
network is used. Each broker in this broker graph can be the root of a sub-graph and can be a service end-point (i.e.,
providing directory and name services), a router between clients and other broker servers, and an interface bridge to a
non-IP based network, i.e., a sensor network. A broker is just an application program capable of running on any com-

Stefan Bosse -5- 2015

Proc. of the EUSPN 2015
DOI:10.1016/j.procs.2015.08.312 Procedia Computer Science, Elsevier

puter visible in a network domain (globally in the Internet, locally in an Intranet). Each node in the network act
always as a service end-point and as a logical router, regardless of the IP server- or client-side visibility.

4. The Modular (J)AVM Platform Architecture

The JavaScript Agent Processing Platform (J4 VM) is highly modular, shown in Fig. 3, consisting of various mod-
ules. Basically it consists of the agent code processes (Agent Forth Virtual Machine, 4FVM, discussed later), an
agent manager (AMAN) responsible for agent processing control, migration, and interaction, some kind of communi-
cation layer (the bare-bone NET module or an OS layer), and optional a distributed operating and coordination layer
consisting of the file- and naming services including the previously introduced RPC, implemented in JavaScript (JS)
and executed either using the node.js VM or a JS capable WWW browser application. The JS platform requires a task
scheduler to implement synchronization of parallel tasks. At least one broker server is required in Intra- and Internet
domains for connecting pure client-side applications (WWW browser). The agent processing platform is imple-
mented in hardware (SoC design, pure digital logic), in software (standalone C/OCAML), and in JavaScript. All
platform implementations are compatible on communication, operational, and execution level. Platforms that should
be visible in Intra- and Internet domains and that are connected indirectly require the RPC, a message Router (used
for inter-node server-client communication, too), and HTTP connection modules to establish at least agent migration.

(A) (B) © (D)
(AFvm) (AFvM) (AFvM] [AFvM) AFvM) [AFVvM] [AFvm | [AFvm][AFvM] [AFvM) [AFVM) [AFVM
(AMAN [1s] | AMAN [1s] | AMAN [s) | AMAN [715
(AFs | DNsS | RUN | NODE) (RUN|NODE] [AFs | DNS | RUN [NODE |
(RPC (RPC (RPC (RPC
(ROUTER (ROUTER (ROUTER (ROUTER
(HTTPCON] [BROKER] [HTTPCON)

TASK Scheduler | TASK Scheduler | TASK Scheduler ' TASK Scheduler | ___________
JS VM Node.js JS VM Node.js JS WEB Browser JS WEB Browser

! 1
! 1
|
l 0s I l 0s I l (o) I l oS I :g Computer |
- 1
! 1
é | |
| Mobile !
l« N I FILE l D l @ l« D WebStoragel : D Device |
(E) (F) (G) : :
Hardware '
[BROKER AFVM] Ts [AFVM| [AFvM] TS JaFvm ! Vieroenry !
HTTP CON AMAN AMAN : !
1
TASK Scheduler NET . IP-Client
7o 1
JSVMNodejs J NODE : Comnection
os | BN | :
! 1
! 1
! 1
|

IP-Server
Connection !

Teotlotled

Fig. 3. The modular host platform architecture: (A) Full Server-side JavaScript (JS) Implementation with File and Naming Serv-
ice (B) Client-side JS Implementation (C) Client-side Browser JS Implementation (D) Client-side Browse JS Implementation
with File- and Naming Services using WebStorage (E) Broker-only Node (F) Native Software Implementation of the AFVM (G)
Native Hardware Implementation of the AFVM

5. The Agent Processor Architecture

An agent consists of a behaviour and a state. The behaviour is given by the previously introduced ATG, and its
state is given by the content of the body variables, the configuration, an identifier, and the control state (current activ-
ity). In this work the entire agent behaviour, the agent data, and the configuration and control state is encapsulated in
program code organized in frames, shown on the left side of Fig. 4. A code frame can be modified by the agent itself
or by the agent manager, responsible for the agent process control and the migration of the program code.

The virtual machine (4FVM, discussed in depth in [2]) executing tasks bases on a traditional FORTH processor
architecture and an extended zero-operand word instruction set («FORTH/AFL). Most instructions operate directly
on the data stack DS and the control return stack RS. A code segment CS stores the program code with embedded
data. The program is mainly composed of words (stack functions). A word is executed by transferring the program

Stefan Bosse -6- 2015

DOI:10.1016/j.procs.2015.08.312

Proc. of the EUSPN 2015
Procedia Computer Science, Elsevier

control to the entry point in the CS; arguments and computation results are passed only by the stack(s). There are
multiple virtual machines with each attached to (private) stack and code segments. There is one global code segment
CCS storing global available functions and code templates which can be accessed by all programs. A dictionary is
used to resolve CCS code addresses of global functions and templates. The program code frame of an agent consists
basically of four parts: 1. A look-up table and embedded agent body variable definitions; 2. Word definitions defining
agent activities and signal handlers (procedures without arguments and return values) and generic functions; 3. Boot-
strap instructions which are responsible to setup the agent in a new environment (i.c., after migration or on first run);
4. The transition table calling activity words and branching to succeeding activity transition rows depending on the
evaluation of conditional computations with private data (variables). The transition table section can be modified by
the agent by using special instructions. Code morphing can be applied to the currently executed code frame or to any
other code frame of the VM. The agent high-level behaviour specified in A4PL can be compiled directly to AFL and

finally to a machine subset AML.

A task of an agent program is assigned to a token holding the task identifier of the agent program to be executed.
The token is stored in a queue and consumed by the virtual machine from the queue. After a (top-level) word was
executed, leaving an empty data and return stack, the token is either passed back to the processing queue or to
another queue (e.g., of the agent manager), enabling self-scheduling of different agent processes, shown in Fig. 4.

Stefan Bosse

Code Frame Agent
® Process Token
BOOT @ Signal
Toke)
LUT Agent Tuple Signal © i TZk;:
Manager Space TS Manager Queue
Parameter L
1
Variables 1 l |
]
Acty ® ®
Agent Forth ccs Agent Forth
] J Code Processor Code Processor J J J
Act, L
|
Handler [| | [I | CCS Common Code
Function Seament.
T CSs DS RS cs DS RS CS Code Segment
Transitions DS Data Stack
RS Return Stack

Fig. 4. (Left) Code Frame Layout (Right) The Agent Forth Virtual Machine Architecture with a token-based agent processing.

6. Big Use-Case: Cloud Based Adaptive Manufacturing and Robots as Products in a Closed-Design-Loop

This section outlines a big application use-case for the introduced agent processing platform environment
deployed in additive and adaptive manufacturing processes based on a closed-loop sensor processing approach with
data mining concepts combined with Internet-of-thing architectures. Additive and adaptive cloud-based design and
manufacturing are attractive in the field of robotics, not only limited to industrial production robotics, mainly target-
ing service robots and semi-autonomous carrier robots. In cloud-based manufacturing, the consumer of the products
is integrated in the cloud-based manufacturing process, directly involved in the manufacturing process using distrib-
uted cloud computing and distributed storage solutions.

Robots as products can be considered as active, mobile, and autonomous data processing units that are commonly
already connected to computer networks and infrastructures. Robots use inherent sensing capabilities for their control
and task satisfaction, commonly using integrated sensing networks with sensor pre-processing, deriving some inner
state of the robot, e.g., mechanical loads applied to structures of the robot or operational parameters like motor power
and temperature. The availability of the inner perception information of robots enable the estimation of working and
health conditions initially not fully considered at design time. The perception of the products delivering operational
feedback to the current design and manufacturing process leads to a closed-loop evolving, shown in Fig. 5. This evo-
lutionary process adapts the product design, e.g., the mechanical construction, for future product manufacturing
processes based on a back propagation of the perception information (i.e., recorded load histories, working and health
conditions of the product) collected by living systems at run-time. The currently deployed and running series of the

2015

Proc. of the EUSPN 2015
DOI:10.1016/j.procs.2015.08.312 Procedia Computer Science, Elsevier

product enhances future series, but not in the traditional coarse-grained discrete series iteration. A robot consists of a
broad range of parts, most of them are critical for system failures. The most prominent failures are related to mechan-
ical and electro-mechanical components, which are caused by overload conditions at run-time under real conditions
not to be considered or unknown at initial design time.

The integration of robots as products and their condition monitoring in a closed-loop design and manufacturing
process is a challenge and introduces distributed computing and data distribution in strong heterogeneous processing
and network environments. The mobile agents representing mobile computational processes can migrate in the Inter-
net domain as well in sensor networks part of the robot.

The agent processing platforms introduced in this work can be deployed in those massive heterogeneous network
environments, ranging form single microchip up to WEB JavaScript implementations, all being fully compatible on
operational and interface level, and hence agents can migrate between these different platforms.

Traditional closed-loop processes request data from sources (products, robots) by using continuos request-reply

message streams. This approach leads to a significant large amount of data and communication activity in large-scale
networks. Event-based sensor data and information distribution from the sources of sensing events to sinks performed
by agents and triggered by the data sources (the robots) themselves, can improve and reduce the allocation of compu-
tational, storage, and communication resources significantly.
Agent Classes. The entire MAS society is composed of and instantiated from different agent classes that satisfy dif-
ferent sub-goals and reflect the sensing-aggregation-application layer model: event-based sensor acquisition
including sensor fusion (Sensing), aggregation and distribution of data, pre-processing of data and information map-
ping, search of information sources and sinks, information delivery to databases, delivery of sensing, design, and
manufacturing information, propagation of new design data to and notification of manufacturing processes, notifica-
tion of designer, end users, update of models and design parameters. Most of the agents can be encapsulated and
transferred in code frames with a size lower than 4kB, which additionally depends on the data payload they carry.

Sensing

-~
AN

d

Sensor Network

Y/

N Manufacturing e < IT! | , - /

-
S - = _——

Fig. 5. Cloud-based computing with agents: Additive and adaptive Manufacturing with aggregation and back propagation of
sensing data from robots to the design process using mobile agents resulting in semi-continuos series improvements.

Stefan Bosse -8- 2015

Proc. of the EUSPN 2015
DOI:10.1016/j.procs.2015.08.312 Procedia Computer Science, Elsevier

7. Conclusions

Agents are represented by mobile program code that can be modified at run-time by agents and that is processed
by a modular and portable agent platform. The presented approach enables the development of sensor clouds and
smart systems of the future integrated in daily use computing environments and the Internet. Agents can migrate
between different hardware and software platform implementations including WEB browsers and JavaScript plat-
forms by migrating the program code of the agent, embedding the state and the data of an agent, too. The design and
platform approach is suitable to cover the sensing, aggregation, and application layers of large-scale and massively
distributed information processing systems efficiently. The Internet and WEB platform network is embedded in a dis-
tributed co-ordination and management shell providing an Object-Capability based RPC and global domain naming
and file services. The RPC communication is encapsulated in generic IP/HTTP messages. A broker service is used to
connect IP client-side only applications like WEB browsers or applications hidden in private networks, which are
then fully capable of client- and server-side RPC communication.

References

[1] S. Bosse, Distributed Agent-based Computing in Material-Embedded Sensor Network Systems with the Agent-on-Chip Ar-
chitecture, IEEE Sensors Journal, Special Issue on Mateiral-integrated Sensing, DOI 10.1109/JSEN.2014.2301938

[2] S.Bosse, Design and Simulation of Material-Integrated Distributed Sensor Processing with a Code-Based Agent Platform
and Mobile Multi-Agent Systems, Sensors (MDPI), 15 (2), pp. 4513-4549, 2015, DOI:10.3390/s150204513.

[3]1 S.Bosse, A. Lechleiter, Structural Health and Load Monitoring with Material-embedded Sensor Networks and Self-organ-
izing Multi-agent Systems, Procedia Technology, 2014, DOI: 10.1016/j.protcy.2014.09.039

[4] S.J. Mullender and G. van Rossum, Amoeba: 4 Distributed Operating System for the 1990s, IEEE Computer, vol. 23, no.
S, pp. 44-53, 1990

[S] M. Caridi and A. Sianesi, Multi-agent systems in production planning and control: An application to the scheduling of
mixed-model assembly lines, Int. J. Production Economics, vol. 68, pp. 29-42, 2000.

[6] M. Pechoucek, V. Marik, 2008. Industrial deployment of multi-agent technologies: review and selected case studies. Au-
ton. Agent. Multi-Agent Syst. 17 (3), 397431

[71 A.Rogers, D. D. Corkill, N. R. Jennings, Agent Technologies for Sensor Networks, IEEE Intelligent Systems, vol. 24, no.
2,2009

[8] . Liu, Autonomous Agents and Multi-Agent Systems, World Scientific Publishing, 2001 (ISBN 981-02-4282-4

[9] S. Bosse, VAMNET: the Functional Approach to Distributed Programming, SIGOPS Oper. Syst. Rev., 40, pp. 108-114,
2006, DOI:10.1145/1151374.1151376

Stefan Bosse -9- 2015

	1. Introduction
	2. The Activity-based Agent Behaviour and the AAPL Programming Model
	3. The Network Architecture
	3.1. Capability based RPC
	3.2. AFS: Atomic File System Service
	3.3. DNS: Directory and Name Mapping Service
	3.4. Broker Service
	4. The Modular (J)AVM Platform Architecture
	5. The Agent Processor Architecture
	6. Big Use-Case: Cloud Based Adaptive Manufacturing and Robots as Products in a Closed-Design-Loop
	7. Conclusions

