
Ilmenau, 13 – 17 Sept. 2010 Proc. of the 55th IWK

Ste
Hardware Synthesis of Complex System-on-Chip
Designs for Embedded Systems Using a Behav-
ioural Programming and Multi-Process Model
Stefan Bosse(1,2)

University of Bremen, Department Computer Science, Workgroup Robotics,
Germany(1), ISIS Sensorial Materials Scientific Centre, Germany(2)

Abstract
Embedded Systems used for control, for
example in Cyber-Physical-Systems
(CPS), perform the monitoring and control
of complex physical processes using appli-
cations running on dedicated execution
platforms in a resource-constrained man-
ner. Application-specific System-On-Chip
(SoC) designs providing the execution plat-
form have advantages compared with tradi-
tionally used program-controlled multi-
processor architectures.
SoC designs can be modelled on structural
and behavioural level. The behavioural lev-
el is generally a more sophisticated model-
ling level. In the context of CPS, these are
mainly reactive systems with dominant and
complex control paths. The major contribu-
tion to concurrency appears on control path
level.
A new SoC design methodology is pre-
sented using the behavioural hardware
compiler ConPro providing an imperative
programming model based on concurrently
communicating sequential processes
(CSP) with an extensive set of interpro-
cess-communication primitives and guard-

ed atomic actions. The programming
language and the compiler-based synthe-
sis process enables the design of con-
strained power- and resource-aware
embedded systems with pure Register-
Transfer-Logic efficiently mapped to FPGA
and ASIC technologies. Concurrency is
modelled explicitly on control- and datapath
level. Additionally, concurrency on datap-
ath level can be explored and optimized au-
tomatically by different schedulers.
The CSP programming model can be syn-
thesized to different levels, not only used
for hardware circuit synthesis: software
models (C, ML), intermediate μCode, RTL
state level, and finally VHDL. A common
source for both hardware and software im-
plementation with identical functional be-
haviour is used.
An extended case study of a communica-
tion protocol used in high-density sensor-
actuator networks should demonstrate the
design of a SoC for a robot actuator. The
communication protocol is suited for high-
density intra- and interchip networks.

Keywords
Cyber Physical Systems, System-on-Chip
design, Synthesis, Digital Logic, Highlevel
Synthesis, ASIC and FPGA technology,

Communication, Network Protocols, Paral-
lel systems, Parallel computing
fan Bosse - 1 - 2010

Ilmenau, 13 – 17 Sept. 2010 Proc. of the 55th IWK

Ste
1. Introduction and Overview
Embedded Systems used for control, for
example in Cyber-Physical-Systems
(CPS), perform the monitoring and control
of complex physical processes using appli-
cations running on dedicated execution
platforms in a resource-constrained man-
ner. System-On-Chip designs are pre-
ferred for high miniaturization and low-
power applications. Traditionally, program-
controlled multi-processor architectures
are used to provide the execution platform,
but application-specific digital logic gains
more importance.
There are two different ways to model and
implement System-on-Chip-Designs (SoC)
used in those embedded systems: using 1.
a structural and/or 2. a behavioural level.
The structural level decomposes a SoC
into independent submodules - processor
cores (or data processing units in general),
memories, and peripherials - interacting
with each other using centralized or distrib-
uted networks and communication proto-
cols. The behavioural level usually
describes the behaviour of the full design
interacting with the environment without
detailed assumptions about system archi-
tecture, generally a more sophisticated
modelling level. In the context of CPS,
these are mainly reactive systems with
dominant and complex control paths. The
major contribution to concurrency appears
on control path level, which can be explicit-
ly modelled on algorithmic level.
A new SoC-design methodology is pre-
sented using the behavioural hardware
compiler ConPro providing an imperative
programming model based on concurrently
communicating sequential processes
(CSP) [5] and guarded atomic actions [4]
with an extensive set of interprocess-com-
munication primitives. The programming
language and the compiler-based synthe-

sis flow enables the design of application-
specific constrained power- and resource-
aware embedded systems on Register-
Transfer-Level efficiently mapped to FPGA
and ASIC technologies. Concurrency is
modelled explicitly on control- and datapath
level. Additionally, concurrency on data
path level can be explored and optimized
automatically by different schedulers.
Hardware blocks (including IPC and exter-
nally modelled) can be accessed transpar-
ently from programming level with a
generic object-orientated approach.
The CSP programming model can be syn-
thesized to different other levels, not only
used for hardware circuit synthesis: soft-
ware models (C, ML), intermediate μCode,
RT state level, and finally to hardware be-
haviour level, e.g. VHDL. A common
source for both hardware and software im-
plementation with identical functional be-
haviour matches different embedded
architecture levels and enables code re-
use. The Metalanguage ML (OCaML) is
well suited for simulation and test-pattern
based functional model checking.
Why a new language? Traditional program-
ming languages like C are designed for se-
quential programming only, and
concurrency is present to some extent
through the use of libraries [1]. Concurren-
cy should be controlled by first-class lan-
guage constructs [3] to enable optimized
design of massive parallel systems and
hardware synthesis. There are several ex-
amples of new designed languages for
concurrent programming, like SystemJ [1]
or X10 [3]. C-like languages used for hard-
ware-synthesis are wide spread, but are
not fully suitable for RTL synthesis due to
strong dependency on memory model
(pointers) and the missing concurrency
fan Bosse - 2 - 2010

Ilmenau, 13 – 17 Sept. 2010 Proc. of the 55th IWK

Ste
model.
What is novel compared with other high-
level-synthesis approaches? One lan-
guage targets both concurrent software
and hardware programming, the hardware
synthesis process can be fine-grained con-
trolled on programming level using param-
eterized blocks. A traditional compiler
approach with μCode intermeadiate repre-
sentation (without loss of concurrency) en-

ables fast and optimized synthesis. Object-
orientated access of hardware blocks using
the External Module Interface (EMI) - part
of the programming model - provides a
modern and transparent interface for both
software and hardware designers, closing
the gap between software and hardware
models. The extended set of IPC primitives
enables concurrent programming of com-
plex control and data processing systems.

2. System-On-Chip Design Using a Behavioural Model Ap-
proach and High-Level Synthesis

Concurrency has great impact on system
and data processing behaviour concerning
latency, data throughput, and power con-
sumption. Streaming and functional data
processing requires fine-grained concur-
rency (on data path level), however, reac-
tive control systems (for example
communication) require coarse-grained
concurrency (on control path level).
The structural level decomposes a SoC
into independent submodules interacting
with each other using centralized or distrib-
uted networks and communication proto-
cols, mainly program-controlled multi-
processor architectures.
The behavioural level usually describes
the functional behaviour of the full design
interacting with the environment. Most ap-
plications and data processing are mod-
elled on algorithmic behavioural level using
some kind of imperative programming lan-
guage.
The ConPro high-level synthesis of SoC
designs uses a behavioural imperative pro-
gramming language with a compiler-based
synthesis approach from algorithmic pro-
gramming level to register-transfer level
mappable directly to digital logic [2].
Concurrency is modelled explicitly on con-
trol path level with processes executing a

set of instructions sequentially, initially in-
dependent of any other process. Interpro-
cess-communication (IPC) provides
synchronization with different objects (mu-
tex, semaphore, event, timer) and data ex-
change between processes using queues
or channels, based on the Communicat-
ing Sequential Processes (CSP, Hoare
1985) model.
There are local and global resources (stor-
age, IPC) , accessed by one process and
several processes, respective. Concurrent
access of global resources is automatically
guarded by a mutex scheduler, serializing
access, and providing atomic access with-
out conflicts.
There are process and top-level instruc-
tions. Top-level instructions are evaluated
during synthesis (configuration). Process
instructions are transformed and mapped
to states of a clock-synchronous finite-
state-machine (FSM) controlling the pro-
cess RTL data path temporally and spatial-
ly, shown in figure 1.
More fine-grained concurrency is provided
on data path level using bounded blocks
executing several instructions (only data
path, e.g. data assignments) in one time
unit. Block level parallelism can be enabled
explicitly or implicitly explored by a basic-
fan Bosse - 3 - 2010

Ilmenau, 13 – 17 Sept. 2010 Proc. of the 55th IWK

Ste
block scheduler [2].
The complete synthesis process can be
fine-grained parameterized on program-
ming block level, for example selection of
different expression models (allocation) or
activation of specific schedulers and opti-
mizers.

 Figure 1. Mapping of the proposed multi-pro-
cess model to FSM-RTL architecture using
high-level synthesis.

Hardware blocks, modelled on hardware
level (VHDL), can be accessed from the
programming level using an object-orien-
tated programming approach with meth-
ods. All hardware blocks, including IPC, are
treated like abstract data type objects (AD-
TO) with a defined set of methods accessi-
ble on process level and top level (only
applicable with configuration methods, for
example setting the time interval of a tim-
er). The bridge between the hardware and
software model is provided by the External
Module Interface (EMI).
The relationship of the proposed program-
ming and execution model and the required
building blocks of Conpro (programming
language and synthesis) are illustrated in
figure 2.

 Figure 2. Building blocks: from the program-
ming model to hardware using high-level
synthesis.

The programming language supports dif-
ferent types of storage objects (single reg-
isters and variables in shared RAM blocks,
true bit-scaled), different aggregation types
(array, structure) and abstract objects. Pro-
gramming statements can modify data (ex-
pressions, assignments) or have impact on
the control flow (conditional and counting
loops, conditional branches, concurrent
multi-value selection).
Figure 3 gives an overview of the design
flow guiding through different levels provid-
ed by the ConPro framework. After the
source code is parsed and transformed into

F

RTL

F

1

2

FSM

Process

queue q: int;
process a:
begin
 reg x: int;
 x <- 0;
 for i = 1 to 10
 do
 x <- x + q;
 done;
end;

F

RTL

F

1

2

FSM

Process

process b:
begin
 reg y: int;
 y <- 0;
 for i = 1 to 10
 do
 q <- y+i;
 y <- y*2;
 done;
end;

Communicating
Sequential
Processes

Instruction
Processing

Concurrency
Parallelism

Imperative &
Sequential

Multi-
Processing

Interprocess-
Communication

Behavioural Model

ConPro

Implementation &
Designflow

Imperative Constrained
Parallel Programming Language

Hardware
Compiler

Software
Compiler

Analysis
Optimization

Hardware
Model

Software
Model

Synthesis

Control Path
Data& RTLVHDL μCode C ML

SoC
Hardware

Processor
Software

Algorithm Algorithmic Level
Programming Language

External Module
Interface

EMI

Intermediate
Representation

Process Types ObjectsStatement

Data Control Abstract

Guarded
Atomic
Actions

Computation &
Execution Model

Building
Blocks
fan Bosse - 4 - 2010

Ilmenau, 13 – 17 Sept. 2010 Proc. of the 55th IWK

Ste
an abstract syntax tree (AST), there are dif-
ferent allocation, scheduling, and optimiza-
tion stages. The reference stack scheduler
performs symbolic analysis on AST level
and resolves constant and storage propa-
gation, conditional assignments and multi-
ple assignments. This ALAP scheduler has
impact on scheduling and allocation done
by optimization. The intermediate μCode
representation was choosen for simplified
RTL synthesis and optimization (synthesis
pass I).
The basicblock scheduler partitions the
program code into blocks without control
side entries containing only data assign-
ments (basicblocks). For each basicblock a
data-dependency analysis is performed. In-
dependent data assignments can be bound
to the same time unit. These optimizing
schedulers can be activated or deactivated
on block level. Finally in synthesis pass III
the RTL is synthesized and mapped to VH-
DL. Alternatively, after pass I (AST) or II
(μCode) software output with same func-
tional and simulated/scheduled concurren-
cy behaviour can be compiled.

 Figure 3. SoC design flow using the high-level
synthesis framework ConPro providing
mapping of a parallel programming model to
RTL hardware and alternatively to software.

The synthesis flow
 Equation 1.

is defined by a set of rules χ. Each set con-
sists of subsets which can be selected by
parameter settings (for example scheduling
like loop unrolling, or different allocation
rules) on block level.
Example 1 shows a concurrent computa-
tion system performing data modification
by an array of four processes sum[0..3].
They access the global register x. Though
the access of x is atomic and guarded, the
expression in line 9 is it not, thus a mutual
exclusion lock m is required. A master pro-
cess someother controls the system and
waits for completion of all sum processes
using a semaphore. A timer t performs
group synchronization (here just for fun).
The synthesis is controlled on block level
with different settings (loop unrolling in line
10, scheduling in line 11, object constraints
in lines 2 & 3). Line 14 creates a bounded
block for data assignments to registers a
and b (using a colon instead of a semico-
lon).

 Example 1. Parts of a ConPro source code ex-
ample.

1 open Mutex; open Timer; open Process; ...
2 object m: mutex with scheduler=”fifo”;
3 object t: timer; t.time(1 millisec);
4 object s: semaphore;
5 reg x: int[12];
6 array sum: process[4] of begin
7 for i = 1 to 10 do begin
8 t.await ();
9 m.lock(); x <- x + 1; m.unlock ()
10 end with unroll=true; s.up ();
11 end with schedule=”basicblock”;
12 process someother: begin
13 reg a,b: int[10];
14 a <- x+1, b <- x-1; x <- a;
15 t.init (); t.start (); s.init(0);
16 for i = 0 to 3 do sum.[i].start();

Parser

SoC
Hardware

Processor
Software

Intermediate
Representation

Analysis
ConPro
Source Analysis

AST
Transformation

AST

Optimization

AST

Synthesis Pass 1μCode Synthesis AST

μCode
Transformation

Optimization

μCode

Referenzstack
Scheduler

Basicblock
Scheduler Synthesis Pass 2Expression

SchedulerμCode

μCode

EMI
Source

Parser Analysis
μCode
Source

FSM&Datapath
Synthesis

Rules

Rules

Rules

VHDL
Synthesis

Toolchain
Script Generator

Synthesis Pass 3

Rules
Code

Templates

Constraints

μCode
Source

C/ML
Synthesis

Rules

Allocation

Scheduling

χ CP : AST μCODE RTL VHDL→ →→ →
fan Bosse - 5 - 2010

Ilmenau, 13 – 17 Sept. 2010 Proc. of the 55th IWK

Ste
17 for i = 1 to 4 do s.down();
18 end;

Objects (like IPC) belong to a module,
which have to be opened first (line 1). Each
module is defined by a set of EMI imple-

mentation files providing all necessary in-
formations about objects of this module
(like method declarations, object access
and implementation on hardware level).

3. An Extended Example: Implementation of a Protocol Stack
for Communication in Sensor Networks

The Simple Local Intranet Protocol (SLIP)
[6] is used for communication in wired high-
density sensor- and actuator networks. It
implements smart routing of messages with
Δ-addressing of nodes arranged in a n-di-
mensional network space (line, mesh,
cube). The network can be heterogeneous
regarding node size, computation power,
and memory. The communication protocol
is scalable regarding network topology and
size. A node is a network service endpoint
and a router, too. The routing informations
are always kept in the packet, consisting of:
1.) a header descriptor (HDT) specifying
the address size class ASC, the address di-
mension class ADC (for example 2 is a two-
dimensional meshgrid), 2.) a packet de-
scriptor (PDT) with routing and path infor-
mations, and finally the data part. SLIP was
designed for low-resource System-On-
Chip implementations using ASIC/FPGA
target technologies, but a software version
was required, too. A node should handle
several serial link connections and incom-
ing packets concurrently, thus the protocol
stack is a massiv parallel system, and was
implemented with the ConPro behavioural
multi-process model. Each link is serviced
by two processes: a message decoder for
incoming and an encoder for outgoing mes-
sages. A packet processor pkt_process
applies a set of smart routing computation
functions (route_normal,
route_opposite, route_backward,

applied in the given order untill routing is
possible), finding the best routing direction.
Communication between processes is im-
plemented with queues. There are three
packet pools holding HDT, PDT and data
parts of packets. They are implemented
with arrays. The packet processor can be
replicated to speed up processing of pack-
ets. A test setup consisting of the routing
processor part of SLIP was implemented A.
in hardware (RTL-SoC, gate-level synthe-
sis with mentor graphics leonardo spec-
trum and SXLIB standard cell library), and
B. in software (SunOS, SunPro C compil-
er). A packet with ADC=2, Δ=(2,3) and a
link setup of the node L=(-y,-x) is received
on the second link (-x) [L01] and is pro-
cessed first by the route_normal rule
(would require connected +x /+y links)
[L03], and finally by the route_opposite
rule [L04] forwarding the modified packet
to the link_0 process [LA0].
Tables 1 to 3 show synthesis and simula-
tion results, of both hardware (HW) and
software (SW) implementation. They show
low resource demands and latency. Differ-
ent checkpoints Lxx indicate the progress
of packet processing. From gate-level sim-
ulation, required clock cycles are obtained,
and from software simulation with a debug-
ger, required machine operations are ob-
tained. The two HW implementations differ
in packet pool architecture: 1. variable ar-
ray in RAM blocks with EREW-access, and
fan Bosse - 6 - 2010

Ilmenau, 13 – 17 Sept. 2010 Proc. of the 55th IWK

Ste
2. register array with CREW-access, result-
ing in lower latency. The SW implementa-
tion contains built-in multi-processing, and
requires up to 30 times more operations
(time units) than the HW implementation.

 Table 1. HW implementation of routing part of
SLIP [packet pool: variable array, ASIC leon-
ardo+SXLIB]

 Table 2. HW implementation of routing part of
SLIP [packet pool: register array, ASIC leon-
ardo+SXLIB]

 Table 3. SW implementation of routing part of
SLIP [packet pool: variable array, SunPro CC,
SunOS, USIII, CS:Code-, DS/BSS:Data seg-
ments]

4. Summary
The ConPro programming language uses a
concurrent multi-process model with inter-
process-communication and guarded
atomic actions, well suited to implement
parallel control and data processing sys-
tems. Algorithms can be reused from tradi-
tional sequential programming. The
ConPro synthesis tool is capable to imple-

ment complex algorithms, like communica-
tion protocols requiring concurrency on
control path level, efficiently in hardware
(below and beyond 1M gates) and software
with same functional behaviour. Hardware
blocks are accessed using a method
based object-orientated programming
model.

Ressources Checkpoint Clock Cy-
cles

Registers:
767 FF

L01 104

Area: 12475
gates

L03 113 (+9)

Path delay:
18 ns

L04 187 (+74)

Source:
1109 lines
CP → 9200
lines VHDL

LA0 235 (+48)

Ressources Checkpoint Clock Cy-
cles

Registers:
587 FF

L01 102

Area: 10758
gates

L03 107 (+5)

Path delay:
16 ns

L04 148 (+41)

Source:
1109 lines
CP → 7900
lines VHDL

LA0 184 (+36)

Ressources Checkpoint Machine
Operations

BSS: 40980
bytes

L01 60000

DS: 4352
bytes

L03 60019 (+19)

CS: 49288
bytes

L04 60796
(+777)

Source:
1109 lines
CP → 2667
lines C

LA0 62305
(+1509)

Ressources Checkpoint Clock Cy-
cles
fan Bosse - 7 - 2010

Ilmenau, 13 – 17 Sept. 2010 Proc. of the 55th IWK

Ste
Bibliography
[1] Malik, Avinash and Salcic, Zoran and

Roop, Partha S., SystemJ compila-
tion using the tandem virtual machine
approach, ACM Trans. Des. Autom.
Electron. Syst., Vol 14, (2009)

[2] S. Bosse, ConPro: Rule-Based Map-
ping of an Imperative Programming
Language to RTL for Higher-Level-
Synthesis Using Communicating Se-
quential Processes, Technical Pa-
per, BSSLAB, Bremen, 2009

[3] Charles, Philippe et al., X10: an ob-
ject-oriented approach to non-uni-
form cluster computing, OOPSLA
’05: Proceedings of the 20th annual
ACM SIGPLAN conference on Ob-
ject-oriented programming, systems,
languages, and applications (2005)

[4] Daniel L. Rosenband and Arvind,
Modular Scheduling of Guarded
Atomic Actions, Proceedings of the
41st annual conference on Design
automation (2004)

[5] C. Hoare, Communicating Sequen-
tial Processes, Prentice Hall, 1985

[6] S. Bosse, D. Lehmhus, Smart Com-
munication in a Wired Sensor- and
Actuator-Network of a Modular Ro-
bot Actuator System Using a Hop-
Protocol with Δ-Routing, Smart Sys-
tems Integration, Como, Italy, 23-
24.3.2010
fan Bosse - 8 - 2010

	1. Introduction and Overview
	2. System-On-Chip Design Using a Behavioural Model Approach and High-Level Synthesis
	3. An Extended Example: Implementation of a Protocol Stack for Communication in Sensor Networks
	4. Summary
	Bibliography

