JavaScript Agent Machine (JAM) 1

A. Simulation Environment for JAM

A.1 Introduction

The SEJAM simulator is a built as a software layer on top of a generic
JAM node. The simulation layer provides visualisation and an extended
simulation API that can be accessed by agents.

There are logical and physical nodes. A SEJAM world consists of logical
nodes handled by one physical nodes, which can be connected to remote
physical nodes via IP links. The simulation world consists of agent pro-
cessing nodes (logical/virtual JAM nodes) and some communication links
(virtual channels) between nodes enabling migration of agents and propa-
gation of signals between nodes. Nodes are placed in a two-dimensional
spatial simulation world, and each node has a distinct position.

There are computational and physical agents. They differ in operation
behaviour, but both are modelled with Agent]JS. Physical agents represent
physical entities like, e.g., humans, ants, cars. Physical agents are bound to
a node (the agent is only mobile through its node). The default agent type
i1s computational and computational agents represent mobile software that
can migrate between logical and physical ndoes.

A meshgrid network arranges nodes in a two-dimensional grid (that can be
irregular and incomplete).

A patchgrid network is similar to NetLogo simulation worlds. A patch grid
arranges nodes in a two-dimensional grid, too, but with an implicit global
virtual communication link that enables migration of phyiscal agents
between any of the nodes in the grid. Migration of computational agents
(default) and propagation of message signals still require explicit links
between nodes.

Communication ports and links have either (static or dynamic) point-to-
point or broad/multicast characteristics, i.e., nodes within a specific spatial
range can communicate with each other (computational agents).

Simulation Environment for JAM Introduction

JavaScript Agent Machine (JAM) 2

Nodes (except in mesh- and patch grid worlds) can be moved within the
two-dimensional world carrying their agents.

The simulation world coordinates and the relation to directions (e.g.,
DIR.NORTH) is show in Fig. 1.
X

Y

Figure 1. SEJAM? simulation world coordinates and directions

A.2 Architecture

A.3 Model

The simulation model is defined by a JS object structure containing the
following sections:

A.3.1 model

type model = {
name? : string,
classes : model.classes,
// synonym for classes entry
agents : model.classes,

resources? : model.resource,
patches? : model.resource,
parameter? : model.parameter,

world : model.world,
physics? : physics,

JavaScript Agent Machine (JAM) 3

The simulation model is a structure object consisting basically of agent
and world descriptor attributes defining agent behaviour and visual proper-
ties, and the composition of the simulation world consisting of logical
JAM nodes.

A.3.2 model.name

type model .name = string

The name of the simulation (model).
A.3.3 model.classes

A.3.4 model.agents

type model.classes = model.agents = {
Sac: {
behaviour: agent constructor function |
open(file),
visual : visual,
type? : ’‘computational’ |
"phyiscal’

on?: { $event : visual },

Definition of agent classes (behaviour, constructor function) and visual
properties used in the simulation. The agent class can be loaded from a
file (by using the open function, which is not supported in browsers). The
event handlers defined in the on section can be used to be display visuals
on signal delivery to an agent (the visual should define a display timeout).

An optional type attribute can classify the agent in two different super
classes:

Simulation Environment for JAM Model

JavaScript Agent Machine (JAM) 4

1. Computational agents (default) — agents represent mobile software
processes — ABC class

2. Physical (or behavioural) agents — agents represent physical entities
(like humans, although, being virtual in the simulation) — ABM class

A.3.5 model.resources

Passive agents with a visual shape and an optional set of parameters.

type model.resources = ({
Src : |
visual : wvisual,
parameter : {}

}

A.3.6 model.patches

type model.patches = {

$pc = {
visual : wvisual,
parameter : {}

}
)

Set of patch classes (node visuals). Patch parameter can be accessed by
agents via the tuple space (node installs tuple provider and consumer func-
tions) or by the ask.patchesprocedure.

A.3.7 model.parameter

type model .parameter = ({
Sparam : number|string|array]|{}

)

Simulation Environment for JAM Model

JavaScript Agent Machine (JAM) 5

Definition of a set of simulation parameters that can be changed by run-
time configuration.

A.3.8 model.world

type model.world = {

init? :
agents? : {
sac : function (nodeid:string,position) —
{level:number,args: []|{}|null}
b
nodes? : function (node),
resources? : function (resource),
patches? : function (resource),
world? : {},
physics? : function (physics),

b,

start?: function (env),

stop? : function (env),

data? : {},

map? : function () — simobj [],
nodes? : { $nc: function (x,y,id)

— node (simobj) },
resources? : { Src: function () — simobj },
meshgrid? : meshgrid,
patchgrid? : patchgrid,

)

Definition of the simulation world.

The initialisation section provides functions that create agents on specific
nodes (returning the individual parameter set of an agent), initialises
nodes, resources, patches, and an optional additional physical MBP world.

The model.world.nodes and model .world.resources entries
specify simulation object constructor functions returning a simulation ob-
ject descriptor. The constructor functions can alternatively defined in the
model .nodes and model . resources sections, respectively.

The map entry defines a function that returns a set of simulation objects at
the beginning of the simulation (creation of the simulation world).

Simulation Environment for JAM Model

JavaScript Agent Machine (JAM)

A.3.9 type agent

function $name (Spl,$p2,..) {
this.Sv=init;

this.act = {

Sactivity: function (){..}
}
this.trans = {
Sactivity: string|identifier|function ()
— string,
}
this.on = {
S$handler: function () {},
$signal: function () {},
}
this.next = $Sactivity;

}

Definition of the agent behaviour (based on the ATG model) with an agent

object constructor function.

A.3.10 type node

type node = {
id:string,
X :number,
y :number,
visual: visual,
ports? : {

$id: comob]

}

}

A node simulation object.

Simulation Environment for JAM

Model

JavaScript Agent Machine (JAM) 7

A.3.11 type visual

type visual = {

shape : ’‘circle’|’rect’|’triangle’|’icon’,
icon? : string,
label? : { text : string, fontSize : number },

width : number,
height : number,
£ill? : {
color : string,
opacity : number [0..1]
b
line? : {
width? : number,
color? : string,
b,
x? : number is relative position in parent frame,
y? : number is relative position in parent frame,
time? : number is a timeout for a visual,

}

This is the visual definition type of an agent, node, or resource (link)..

A.3.12 type simobj

type simobj = {
id: string,
X: number,
y: number,
ports? : { $id : comtype },
gps? : {latitude,longitude,height},
visual : wvisual

}

Simulation object descriptor (position and visual geometry) with optional
communication ports (type node only).

A.3.13 type comobj
type comobj = {

Simulation Environment for JAM Model

JavaScript Agent Machine (JAM) 8

}

type : ‘multicast’|’physical’|’unicast’,
status : function (nodes:string I[])

— boolean|string [],
ip? : string, // type=’'physical’,
to? : string, //
proto? : ‘udp’|’http’, //
visual : wvisual,

Communication port object descriptor.

A.3.14 type meshgrid

type meshgrid = {

rows : number, // y-axis
cols : number, // x-axis
levels? : number, // z.axis
// Positions of z-levels on 2d plane
matrix? :[[zl x,zl y],[z2 x,z2 y],[z3 x,z3 vy]],
node : {
// Node ressource visual object
visual : visual,
// Node filter creating irregular meshgrids
filter? : function (pos:number []) — boolean

b,

// Link port connectors

port? : { // Link port connectors
type : ’‘unicast’,
place : function (node)
— {x:number,y:number, id:DIR} [],
visual : wvisual

b,

// Connections between nodes
// with virtual port conectors

link? : {
type : ’‘unicast’,
connect? : function (nodel,node2,portl,port2)
— boolean,
visual : visual

b,

Simulation Environment for JAM Model

JavaScript Agent Machine (JAM) 9

// Create some custom nodes dynamically
// with a constructor function defined below
map? : function (model) -> [],
// Some custom node constructor functions
nodes : {
Snodeclass : function (x:number,y:number)
— simobj

Defines a one, two, or three-dimensional meshgrid network of nodes con-
necting neighbouring nodes.

A.3.15 type patchgrid

This is a classical simulation world derived from the NetLogo simulation
world model used for simulating social and technical systems. In a patch
grid the world is divided into patches.

If the floating parameter is not set or false, each patch is related to a logi-
cal JAM node. Physical agents can occupy a patch via the logical JAM
node. They can migrate from one patch to any other patch by a number of
steps and a movement angle (delta vector) immediately. A node is con-
nected to all other nodes in the grid by a virtual link. Each node provides
connectivity for physical and computational agents which differ. Computa-
tional agents cannot migrate to any node in one step. They have to use
other virtual links providing connectivity to some (neighbouring) nodes,
e.g., simulating a short range mobile link.

If the floating parameter is true, only a visual grid with patch resources is
displayed. In this case, a physical agent in the simulation is a mobile tuple
<logical node,behavioural agent>.

type patchgrid = {
rows : number,
columns : number,
// geometrical width and height of patch in pixel
width : number,
height : number,
// default visual for a patch field, can be changed

Simulation Environment for JAM Model

JavaScript Agent Machine (JAM) 10

visual? : visual,
floating? : boolean

A.3.16 type physics

type physics = {
scenes: {
plate: function plate(world, settings)
— mbp | open(file)

}
}
type mbp = {
masses : mass [],
loadinggs : [],
map : function (number []) — mass,
read: function (parameter) — string,
write: function (parameter,value)

Includes a physical model definition (MBP).

A.3.17 type resource

type resource = {
parameter: {},
visual : visual

}

A4 API

The simulator provides some additional and extended AIOS APIs for
agents.

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 11

A.4.1 Extension: net

Simulation functions for physical (behavioural) agents derived from Net-
Logo simulation model is provided by the net extension related to a patch
grid world. Furthermore, agent grouping is supported.

* net.ask

* net.create
- net.forward
* net.get

e net.turn

s net.group

* net.set

s net.serxy
net.ask

function (what:string, who:string|string
[] |number |number []|bbox, callback?, remote?) —

*[1]

The ask function (derived from NetLogo simulation model) can be used to
apply a function to a set of simulation objects, i.e., agents (physical only),
patches, resources, nodes. The simulation object passed to the callback
function depends on the type selection (what) and can be modified by the
callback function.

Note that the objects are not protected like agents executed in their own
context, and the callback function can invalidate the object, e.g., an (other)
agent or a logical JAM node. If the simulation objects asked for agents
and the remote flag is set, the callback function is executed in this agent
context asynchronously, otherwise in the context of the caller agent syn-
chronously. In this case, a second argument is providing the node object
for the agent. The function returns the requested set of simulation objects.

The type of simulation object is selected by the what argument:

- agent (s) returns agents within a radius, at a patch position, or in a
specific direction — {agent:string, class:string,

pos:{x,y}} II

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 12

- agent (s) -<class> restricted to a specific agent class — {agent:
string, pos:{x,y}} I[I]

- node (s) returns nodes within a radius, at a patch position, or in a
specific direction — {node:string, class:string, pos:

{x,v}} 0]

- node (s) -<class> restricted to a specific node class

- patch(es) returns patches - {x,vy, ..} 101 | {x,v,..} 1[I

| {x,v,..}
- resource (s) returns resources within a radius or specific direction
with object descriptors — {resource:string,

distance:number, class:string, data:*, x, vy, w,

h} 1

- resource (s) -<class> restricted to a specific class — {id:
string, distance:number, data:*, x, vy, w, h} []

- children returns agent group children — string []
« parent returns agent group parent — string

- bbox returns bounding box of agent (including groups) or resource
coverage in the patch world - {x,y,w, h}

- distance returns the distance to nearest object or objects in a specific
direction, within a bounding box, or relative to a specific object
(objects: agents, resources) — {distance:number, objects:

{} 00}

- distance-<class> returns the distance to the nearest object of a
specific class (in general agent or resource, or a specific agent or
resource class)

The who parameter commonly specifies the objects (of the type class) or a
spatial region to be searched. Agents of a specific class can be selected by
the what argument, a specific agent can be selected by the who argument
by passing the agent identifier to the who parameter (or an regular expres-
sion for finding a set of agents, alternatively).

For a radius search around the current agent position the radius 7 (in patch
units) has to be passed to the who paramter. A specific patch world posi-
tion (of a patch, node, or resource) is referenced by an array [x,y]. The
current position is referenced by a null argument. A search for all ob-

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 13

jects of a type and class is performed with a * argument.

A patch search returns a two-dimensional array within a radius region (ex-
cept if patch (es) -array was selected), a two- or one-dimensional ar-
ray on a bounding box search, and one patch object if a position was
selected. A patch search returning all patches (* argument) returns the ori-
ginal two-dimensional patch array.

A search in a rectangular region is performed with a bounding box
{x,v,w,h} or {x0,x0,y1,y1}) in absolute path world coordinates, a
bounding box heading towards a specific region
{dir,distance?, spread?} including the current position at the
outer side, or relative to the current position {dx,dy,w,h}. The bound-
ing box has to be passed to the who parameter. In case of a patch search
within a two-dimensional region, the returned object set is organised in a
two dimensional array (rows by columns) mapping the search region, oth-
erwise a vector array is returned.

A search (e.g., distance) towards a specific direction can be limited to a
maximal distance by passing a {dir,distance:number} argument to
the who parameter.

set=net.ask(’agents’,4)

// [{agent:"tyroilla",class:"ac",pos:{x:3,y:2}}]
set=net.ask(’distance’,DIR.NORTH)

// [{agent:"tyroilla",distance:2,

// class:"ac",pos:{x:3,y:2}},..]

set=net.ask (' resources-street’,{x:2,y:2,w:4,h:4})
// [{resource:"streetl",class:"street",

// x:3,y:3,w:10,h:3},..]

patch=net.ask (’'patch’, [2,3])

// {x:2,y:3,data:..}

Example 1.
net.create

function (what:string, num:number, callback?) —
string []

Creates a number of simulation objects, i.e., agents, nodes, resources
(derived from NetLogo simulation model). The optional callback function
can be used to initialise the object. In the case of agents, the callback
handler is executed in the agent context asynchronously and can be used

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 14

to position (physical agent) in the world or to transfer an agent to a
destination node.

The type of simulation object is selected by the what argument:
« agent (s)

« agent (s) -<class>

« node (s)

« node (s) -<class>

« resource (s)

« resource(s)-<class>
net.forward

function (delta?:number)

Moves agent and its node in the current direction (agent heading) by delta
places (approximately if heading angle is not orthogonal). Group forma-
tions are moved together. Patch grid boundaries are checked. A movement
beyond the patch grid world coordinates is discarded (including attached
children).

net.get
function (p:string) — *

Returns a physical agent parameter. Valid simulation object parameters are
currently color and shape, heading. The heading variable holds the
current forward direction of the agent.

net.group.add

function (parent:agentid, childs:[agl,ag2,..1],
align:dir)

Adds a set of physical agents including the logical node (children) to a
parent agent and node and attaches the added agents visually object to the
parent node container with the given alignment mode (direction):
DIR.NORTH, DIR.SOUTH, DIR.WEST, DIR.EAST, DIR.NW,
DIR.NE, DIR.SW, DIR.SE. Physical agents can be anytime grouped
without prior declaration. Groups can be nested, i.e., a child can be a
parent node of another group.

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 15

net.group.rem

function (parent:agentid, childs:[agl, ..])
Removes child nodes from a parent agent group container.
net.set

function (p:string, v:*)

Sets a physical agent variable. Valid simulation object parameters are
currently color and shape, heading.

net.setxy

function (x:number, y:number)

Moves object to new position (x,y).
net.turn

function (angle:number|dir)

Turns agent heading by a delta angle (in degree) or sets the heading to a
specific direction. An angle of 0 is related to the North direction, 90 de-
gree to the East direction, and so on.

A.4.2 Extension: simu

Generic simulator interface.

simu.changeVisual

function (id:string,visual)

Changes the visual property of a simulation object.
simu.clear

function (msg:boolean, log:boolean)

Clears the system and (agent) message windows.
simu.createNode

function (nodeclass:string|function, argl,
arg2,...) — nodeid

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 16

Creates a new simulation node (logical JAM node). The first argument ei-
ther specifies the name of a simulation node constructor function defined
in the model .world.nodes section of the simulation model.or a func-
tion returning an object of type simobj.

simu.createOn

fucntion (nodeid:string, ac:string, args:{}|I[],
level :number) — agentid

Create a new agent of specified class on given node. The agent constructor
function must be already compiled (from the simulation model section
classes)

simu.createResource

function (id:string, resclass:string, visual,
paramaeters?:{}) — resid

Creates a new resource. A resource 1S a passive agent with an optional set
of parameter variables.

simu.deleteResource

function (id:string)

Deletes and removes a resource from the simulation world.
simu.deleteNode

function (nodeid:string)

Deletes a simulation node (logical JAM node).
simu.event.add

function ()

simu.event.get

function () — [I]

simu.getStats

function (target:’node’ |undefined, arg:string)-> {}

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 17

simu.getSteps

function () — number

simu.inspect

function (object|array|*,..) — string
simu.message

function (string)

Print a pop-up message.

simu.model

function () — model

Returns the simulation model descriptor object.

simu.move

function (id:string, dx, dy, and, andmore)
Relative movement of a simulation object in the 2D simulation world.
simu.moveTo

function (id:string, x, y, and, andmore)

Absolute movement of a simulation object in the 2D simulation world.
simu.network

{x:number, y:number, z:number}

simu.options

{..}

simu.parameter

function (parameter:string) — *|model.parameter

Returns simulation model parameter (model. parameter, if defined). If argu-
ment is undefined the entire model parameter object is returned, otherwise
a specific parameter.

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 18

simu.print

function (object|array]|*)

Pretty printer for objects and arrays. Used for inspection only.
simu.sprint

function (object|array|*) — string

Pretty printer for objects and arrays. Used for inspection only. Returns
string.

simu.start

function (steps:number|undefined)

Start the simulation.

simu.stat

function (p,V)

simu.stop

function () — number

Stop the simulation and returns the number of simulated steps.
simu.time

function () — number

Get the current simulation world time (includes lag correction and is not
the host system time)

simu.untis

?7?

Simulation world units
simu.Vec3

function (x,y,z) — CANNON.vec3
Returns a vector for physical simulation (CANNON MBP).

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 19

A.4.3 Database

There are two data base modes supported:
1. Internal embedded SQL data base mode with local file system access

2. External SQL data base (already running) that is accessed via a
proprietary communication protocol and socket/http communication.

The first mode supports synchronous operations, whereas the second mode
only supports asynchronous operations using a callback function. The first
mode returns SQL request-response objects:

type sglresponse = {
code :number,
ok:boolean|undefined,
statement:string,
result: []]|{}]|*|undefined

simu.db.init

function (path:string, channel:number|undefined,
callback?) — status

Opens or creates a new SQL data base. Two modes are supported: (1) Em-
bedded SQL and local file system mode (channel argument must be
undefined) or (2) External SQL data base that is accessed via a proprietary
communication protocol and socket/http communication.

simu.db.createMatrix

function (path:string, matname:string, header: [],
callback?) — status

Creates a new matrix in the data base referenced by the path argument.
The header argument specifies the type interface of a row, 1.e.,
[/ Sname:Stype’] or [Stype]. Stype is either an SQL integer
or varchar (n) type.

simu.db.createTable

function (path:string, matname:string, header:{},
callback?) — status

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 20

Creates a new table in the data base referenced by the path argument. The
header argument specifies the type interface of a row, ie., {
S$name:$type }. Stype is either an SQL integer or varchar (n)

type.
simu.db.drop

function (path:string, table:string, callback?) —
status

Deletes a table (or matrix) in the data base referenced by the path argu-
ment.

simu.db.exec

function (path:string, cmd:string, callback?) —
status

Executes a SQL statement on the data base referenced by the path argu-
ment.

simu.db.get

function (path, callback?) — status
79

simu.db.insert

function (path,table:string,row,callback?) ->
status

Inserts a row in the given table and data base.
simu.db.insertMatrix

function (path, matrix:string, row, callback?) —
status

Inserts a matrix into the data base.
simu.db.readMatrix

function (path,matrix:string,callback) — status

Reads an entire matrix.

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 21

simu.db.select

function (path,table:string, vars:[], cond:string,
callback?) — status

Data base select operation
db.writeMatrix

function (path:string, matrixname:string,
matrix: [][], callback?) — status

Writes an entire matrix to the given data base.

A4.4 CSV
simu.csv.read

function (file:string, callback, verbose?) —
status

Asynchronous reads and parses a CSV file and passes the content as a ma-
trix to the callback function

simu.csv.write

function (file:string, header:string [], data:[]I[],
callback:function, wverbose?) — status

Writes a matrix to a file in CSV format.

A.4.5 Physics

simu.phy.get

function (id:string) — *
Returns a physical simulation object
simu.phy.refresh

function ()

Refreshs the physical simulation

Simulation Environment for JAM API

JavaScript Agent Machine (JAM) 22

simu.phy.step
fucntion (n:number, callback)

Performs (n) physical and computational simulation step(s)
simu.phy.stepPhyOnly
function (n:number, callback)

Performs (n) physical simulation step(s)

A.5 Networking

A world consists of a set of logical (virtual) JAM nodes can communicate
via virtual channels with each other. Selected logical nodes can be con-
nected to the outside world via physical IP links.

A.5.1 Comparison of NetLogo and SEJAM Simulations

The well known and established NetLogo simulator is (commonly) used
for the ABM domain only. In contrast, the SEJAM simulator is primarily
used for the ABC domain, although any physical simulation can be
transformed in a computational task implementing the behaviour of a phy-
sical entity. The fusion of real worlds deploying computational agents (that
interact with machines and humans) with virtual simulation models re-
quires a mapping methodology to be able to simulate physical agents (i.e.,
artifacts of real entities) using computational agents.

Computational agents as mobile software processes require a connected
communication network of host platforms (computers) to migrate along a
path AB. A human being, in contrast, do not require such a digital tran-
sport network. In a simulation world, a physical (pure behavioural) agent
can overcome arbitrary distances in one step (in principle).

To combine social interaction and computational simulation models, the
SEJAM simulation model was extended by two super classes of agents: (1)
Computational (2) Behavioural/Physical agents. A behavioural agent con-
sists of a <mobile node, physical agent> tuple. The behavioural agent is
bound to this node and can change its position only by moving the node
carrying the agent. In contrast, computational agents are mobile and can

Simulation Environment for JAM Networking

JavaScript Agent Machine (JAM) 23

hop from one platform to another if there is a communication link
between both platforms by performing process serialisation and
deserialisation. The link can be virtual (inside the simulation world) or
physical connecting a logical node of the simulation world with another
JAM platform in the real world (e.g., a smartphone) via the Internet.

The mapping of NetLogo model constructs and statements on the SEJAM
simulation model is shown in the following table. There are two ap-
proaches implementing the NetLogo patch grid world in the SEJAM simu-
lation world: (1) Floating grid with mobile nodes carrying immobile
agents representing turtles (active agents) and resources representing
patches (2) Static grid with immobile nodes and mobile agents (turtles)
representing patches. Only the first approach is considered (although both
can be implemented with SEJAM). In NetLogo, the agent behaviour is en-
tirely controlled and executed by a global observer (centralised macro con-
trol), whereas in SEJAM the agent behaviour is controlled and executed by
each individual agent (decentralised micro control).

NetLogo SEJAM
Entity Turtle Active agent: mobile logical
JAM node linked with physical
behavioural JAM agent, Pas-
sive agent: Resource

Entity Patch Resource

Entity World JAM world consisting of one
physical JAM node and multi-
ple mobile logical JAM nodes
(on patch positions), patch grid

Observer World agent on dedicated JAM
world node controlling simula-
tion

turtles-own [x,vy] Agent body variables

this.x, this.y
patches-own Patch resource parameter set

Simulation Environment for JAM Networking

JavaScript Agent Machine (JAM)

forward Netkogate dang

Moving of &M agent with

ask turtles

ask patches

globals

its node inside the simulation
world
net.ask(’agents’, ..)
simulation interface for physi-
cal agents

net.ask (’patches’, ..)
simulation interface for physi-
cal agents

Global model parameter, JAM
world agent and world node

24

Table 1. Comparison of the NetLogo simulation model with SEJAM model
using floating patch grid approach

to setup
ask patch x y [
sprout 1 [
set color brown
set shape "circle"
set size 10

stamp
]
] function world () {
this.act = {
init: function () {

net.ask (’'patch’, I[x,
function (patch) {
net.set ({

color: ’'brown’,
shape: ’circle’,
width: 10,
height: 10

})
})
}

Simulation Environment for JAM

v,

Networking

JavaScript Agent Machine (JAM) 25

I

Modification of patches in NetLogo and SEJAM with NetLogo compatibili-
ty layer

// 0. NetLogo
bread [agents agent]
ask [ask id [] ask id-here []
set data 0
set more O
rotate a
forward n
]
// 1. Observer control
function world () {
simu.bread(['agent’])
this.act = {
function actl () {
net.ask(’agents’,’*’|id|null,
function (ag) {
// Executed in ag Ctx
this.data = 0

this.more = 0
net.rotate (a)
net .forward (n)

}, true)
}
}
// 2. Agent control
function agent () {
this.act = {
function actx () {
this.data =
this.more

net.rotate

0

= 0
(a)
net.forward

a
(n)

}
}
}

Relation of NetLogo turtle modification and AgentJS behaviour. Either the

Simulation Environment for JAM Networking

JavaScript Agent Machine (JAM)

26

agent itself modifies its visual, position, and body data, or the world agent

modifies a set of agents via the simulation interface.

model = {
agents : {
Sname : {
behaviour : function ac
visual : wvisual,
type : ’'physical’|’computational’
}
b
resources : {
S$name : {
visual : wvisual,
parameter
}
b
nodes : {
S$name : {
visual : wvisual,
parameter ; {}
}
}
world : {

patchgrid : {

rows: number,
columns: number,

I

visual? : visual,

}

The entire simulation model structure (visual parameters define the visual

shape of simulation objects)

A.6 Release Information

Simulation Environment for JAM

Release Information

JavaScript Agent Machine (JAM) 27

Author: Stefan Bosse
Revision: 8.7.2019

Simulation Environment for JAM Release Information

	JavaScript Agent Machine (JAM)
	Simulation Environment for JAM
	Introduction
	Architecture
	Model
	model
	model.name
	model.classes
	model.agents
	model.resources
	model.patches
	model.parameter
	model.world
	type agent
	type node
	type visual
	type simobj
	type comobj
	type meshgrid
	type patchgrid
	type physics
	type resource

	API
	Extension: net
	Extension: simu
	Database
	CSV
	Physics

	Networking
	Comparison of NetLogo and SEJAM Simulations

	Release Information

