
Distributed Operating Systems: One Big
Machine and Amoeba

From computer cabinets to real Clouds

Priv.-Doz. Dr. Stefan Bosse
Universität Bremen, FB Mathematik & Informatik

19.3.2018
sbosse@uni-bremen.de

1. Inhalt

1. Inhalt 1
2. Introduction 2

2.1. Goals . 2
2.2. Distributed vs. Parallel Systems 3
2.3. Distributed Operating Systems 4
2.4. History . 4
2.5. Objects and Filesystems . 5
2.6. Distributed Operating Systems 4

3. Distributed OS Amoeba 6
3.1. Goals . 2
3.2. Hardware Architecture . 7
3.3. Software Architecture . 7
3.4. Object Capabilities . 8
3.5. Security . 9
3.6. Servers and Services . 9
3.7. Communication . 10

4. Summary 10
5. References and Further Reading 11
6. Practical Lessons 12

1

Distributed Operating Systems: One Big Machine and Amoeba

2. Introduction

Question: How can complex systems be implemented with simple
concepts?

2.1. Goals

• You understand basic principles of a Distributed Operating System and
the distinction from Networked Operating Systems

• You understand the basic challenges and features of distributed computing
and distributed file systems

• You will be able to understand how Clouds of the future can be designed
and used

• Some practical programming lessons should demonstrate simple network
communication and distribution of computation

2.2. Distributed vs. Parallel Systems

Distributed System
A Distributed system is a collection of loosely coupled processors or com-
puters interconnected by a communication network (Multicomputers)

• Memory Model: Distributed Memory → Each processor has private
memory

• Communication: Message based using Networks

Priv.-Doz. Dr. Stefan Bosse 2

Distributed Operating Systems: One Big Machine and Amoeba

• Resources: Not directly shared

Parallel System
A Parallel system is a collection of strongly coupled processors
(Multiprocessors)

• Memory Model: Shared Memory
• Communication: Directly via electrical signals → Switched Network

(Crossbar) | Bus → Point-to-Point | Point-to-N Networks
• Resources: Shared (Bus, Memory, IO)

Fig. 1. Taxonomy of distributed and parallel systems [1]

2.3. Distributed Operating Systems

• Historically based on Network Operating Systems (e.g. Linux Clus-
ters): Users are aware of multiplicity of machines!

– Tools: Remote Login (telnet, ssh), Remote Desktop (Windows),
File Transfer (FTP, SSH), Network Filesystem (NFS)

• A Distributed Operating System hides machines: Users are not aware
of multiplicity of machines!

– Access of remote resources similar to access of local resources

– Transfer of computation (rather than data)

Priv.-Doz. Dr. Stefan Bosse 3

Distributed Operating Systems: One Big Machine and Amoeba

2.4. History

Fig. 2. Time line of some selected DOS. Golden age of DOS development was
around 80’s and 90’s!

2.5. Objects and Filesystems

Resource == Object = {file, device, processor, memory, ..}

Priv.-Doz. Dr. Stefan Bosse 4

Distributed Operating Systems: One Big Machine and Amoeba

Traditional Operating Systems

• Filesystems handle mostly the organization and structuring of data

• UNIX: Local devices and processes are represented by virtual files

Distributed Operating Systems

• Handle all objects in the filesystem

• Provide name spaces and name mapping service: resource ⇔ name

• Plan9: All objects are files!

• Amoeba: File storage (data) and Organization (directories) separated!
Objects are handled by servers → Object-orientated approach!

2.6. Distributed Operating Systems

Design and feature criteria

Naming
How can we name an object that is far away with unknown location?

Robustness
What happens if a machine or a network fails?

Security
How can we protect our system from failure, fraud, intrusion , hijacking, ..
?

Performance
Slower than ever?

Consistency
I made a bank transaction, the acknowledge of the transaction getting lost,
and the transaction was repeated → my account was charged twice times?

Scalability
What happens with these criteria if we increase the number of machines by
10 times?

Priv.-Doz. Dr. Stefan Bosse 5

Distributed Operating Systems: One Big Machine and Amoeba

3. Distributed OS Amoeba

Question: What makes the Amoeba OS unique and different from
UNIX or Windows?

3.1. Goals

One Big Machine

• Presentation: Present a network of computers as a single machine to
the user and programs

• Transparency: No difference in accessing local and remote resources
(files, devices, processor, memory)

• Computer Architecture: Use of generic computers already available!

Resources

• All resources are handled as objects by servers with unified object descrip-
tors: Capabilities

Future not Past

• Do not rely on any existing OS or concept to design a new efficient and
clean DOS

Flexibility

• Easy to extend; scalable → The natural Amoeba!

3.2. Hardware Architecture

Amoeba hardware consists of four components:

• Workstations

• Pool processors

• Storage

Priv.-Doz. Dr. Stefan Bosse 6

Distributed Operating Systems: One Big Machine and Amoeba

• Networks / Gateways

But all computers and components can be generic: Big server, desktop computer,
mobile device (smartphone!), Embedded Computer (Raspberry PI!)

3.3. Software Architecture

Amoeba is an object-orientated system using clients and
servers. But the roles client/server are not fixed. A server
can be a client, too!

• Client processes (i.e., any program) use the concept of Remote Procedure
Calls to send requests to servers and to get replies:

RPC : request → message → Server → message → reply

• UNIX: Objects (files) are handled (identified) with paths

• Amoeba: All objects (files, processors, processes, devices, ..) are specified
by and handled with single capabilities!

• A set of objects are handled by servers (e.g. file server, processor server,
..)

• Servers are processes that can be executed on any machine!

Priv.-Doz. Dr. Stefan Bosse 7

Distributed Operating Systems: One Big Machine and Amoeba

3.4. Object Capabilities

• A capability (object handle) is a record that contains the following data:

– A server port number (e.g., 100239) linking the object (e.g. file) to
a server (file server)

– An object number identifying the object uniquely on this server

– A rights field: Which operations are allowed with this capability?
(read, write, execute, delete, ..)

– A check field securing and protecting the capability and the rights
field

3.5. Security

An object (e.g. file) can be represented by different capabilities allowing only a
sub-set of operations (read, write, execute, delete) → restricted capabilities

• The check field encrypts the entire capability using a one-way function
and contains the rights field

• Only servers can restrict capabilities: They use a private key to create a
public key (check field)

• Server “listen” on private port, but clients access servers with encrypted
public port → No server faking possible!

Priv.-Doz. Dr. Stefan Bosse 8

Distributed Operating Systems: One Big Machine and Amoeba

3.6. Servers and Services

• A server provides a service to access objects of the server → object-
orientated approach

• A server manages a table containing objects. The object number is the
table row. The columns are data.

Amoeba servers

BULLET Fileserver
The file server. This server only stores file data as linear blocks. A committed
file is atomic and cannot be modified → Robustness!

SOAP Directoryserver
The name space server. It provides a directory graph with tables mapping
names on capabilities. The directories are stored as Bullet files. More than
one file server can be used in replication mode.

RUN Excecutionserver
The process server. It controls the execution of programs and supports
process snapshot migration from one to another machine.

3.7. Communication

Long story - short conclusion

Distributed Systems require communication by using messages.

Priv.-Doz. Dr. Stefan Bosse 9

Distributed Operating Systems: One Big Machine and Amoeba

• Network communication is slow compared with memory access

• Major goal of DOS: Speedup by Parallelization!!

• But communication reduces the degree of Parallelization!

Fig. 3. Interaction between two SOAP directory server operating in two-copy
mode and two BULLET file servers.

4. Summary

• The Amoeba OS poses a very simple and clean design princpile to compose
large-scale distributed systems

• It is an object-orientated OS with servers managing objects

• Objects (files, screens, processes, ..) are accessed by using capabilities and
Remote Procedure Calls

• Servers are identified by their ports - not by their location!

• Robustness: File server stores files in contiguous blocks. After a file is
committed it is immutable!

• A directory-based naming service provides name → capability mapping

• Robustness: File and directory servers can be redundant

Priv.-Doz. Dr. Stefan Bosse 10

Distributed Operating Systems: One Big Machine and Amoeba

5. References and Further Reading

Books - Further Reading

1. Andrew Tanenbaum, Distributed Operatings Systems, Pearson, 1996. →
Chapter 7

6. Practical Lessons

Using JavaScript and node.js

Group work!

1. You will get a JavaScript code template that provide basic opera-
tions/primitives:

• Networking: Sending/receiving of text messages (RPC)

• Synchronisation

• Capabilities

• Service Loop

• File and Name server (sim. Bullet/SOAP)

• ..

You will be able to construct and study a very simple DOS based on the
Amoeba principles using IP networks / the Internet. Use the provided
demo application and set-up a small distributed network in your group
and start the hello world service. Question: What is an IP address? How
was it assigned to your computer? How do you find your IP address?
UNIX/Windows?

2. Create a schematic diagram of your current network and explain the ser-
vices that are provided. Read reference [1]/Ch.7 for more information.

If your program communicates with servers (e.g., the hello world server)
on a remote computer it has to have the IP address of the remote machine.

Priv.-Doz. Dr. Stefan Bosse 11

Distributed Operating Systems: One Big Machine and Amoeba

But you uses a capability? How can the mapping Server Port ↔ IP be
resolved? How is it done in the original Amoeba OS?

Priv.-Doz. Dr. Stefan Bosse 12

	1. Inhalt
	2. Introduction
	2.1. Goals
	2.2. Distributed vs. Parallel Systems
	2.3. Distributed Operating Systems
	2.4. History
	2.5. Objects and Filesystems
	Traditional Operating Systems
	Distributed Operating Systems

	2.6. Distributed Operating Systems
	Design and feature criteria

	3. Distributed OS Amoeba
	3.1. Goals
	One Big Machine
	Resources
	Future not Past
	Flexibility

	3.2. Hardware Architecture
	3.3. Software Architecture
	3.4. Object Capabilities
	3.5. Security
	3.6. Servers and Services
	Amoeba servers

	3.7. Communication

	4. Summary
	5. References and Further Reading
	Books - Further Reading

	6. Practical Lessons

