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Abstract: The design and simulation of  an agent processing platform suitable
for distributed computing in heterogeneous sensor networks consisting of low-
resource nodes is presented, providing a unique distributed programming model
and enhanced robustness of the entire heterogeneous environment in the pres-
ence of node, sensor, link, data processing, and communication failures. In this
work multi-agent systems with mobile activity-based agents are used for sensor
data processing in unreliable mesh-like networks of nodes,  consisting of a single
microchip with limited low computational resources, which can be integrated in-
to  materials and technical structures. The agent behaviour, based on an activity-
transition graph model, the interaction, and mobility can be efficiently integrated
on the microchip using a configurable pipelined multi-process architecture based
on the Petri-Net model and token-based processing. A new sub-state partitioning
of activities simplifies and optimizes the processing platform significantly. Addi-
tionally, software implementations and simulation models with equal functional
behaviour can be derived from the same program source. Hardware, software,
and simulation platforms can be directly connected in heterogeneous networks.
Agent interaction and communication is provided by a simple tuple-space data-
base. A reconfiguration mechanism of the agent processing system offers activi-
ty graph changes at run-time. The suitability of the agent processing platform in
large scale networks is demonstrated by using agent-based simulation of the plat-
form architecture at process level with hundreds of nodes.

Keywords: Multi-Agent Platform, Sensor Network, Mobile Agent, Heteroge-
neous Networks, Embedded Systems

1. Introduction 

Trends are recently emerging in engineering and micro-system applications such as
the development of sensorial materials [11] show a growing demand for distributed au-
tonomous sensor networks of miniaturized low-power smart sensors embedded in tech-
nical structures [4]. These sensor networks are used for sensorial perception or
structural health monitoring, employed, for example in Cyber-Physical-Systems
(CPS), and perform the monitoring and control of complex physical processes using
applications running on dedicated execution platforms in a resource-constrained man-
ner under real-time processing and technical failure constraints.

To reduce the impact of such embedded sensorial systems on mechanical structure
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properties, single microchip sensor nodes (in mm3 range) are preferred. Real-time con-
straints require parallel data processing inadequately provided by software based sys-
tems. 

Multi-agent systems can be used for a decentralized and self-organizing approach of
data processing in a distributed system like a sensor network [2], enabling information
extraction, for example based on pattern recognition [3], and by decomposing complex
tasks in simpler cooperative agents.

Hardware (microchip level) designs have advantages compared with microcon-
troller approaches concerning power consumption, performance, and chip resources by
exploiting parallel data processing (covered by the agent model) and enhanced re-
source sharing [6], which will be applied in this work.

Usually sensor networks are a part of and connected to a larger heterogeneous com-
putational network [2]. Employing of agents can overcome interface barriers arising
between platforms differing considerably in computational and communication capa-
bilities.  That's why agent specification models and languages must be independent of
the underlying run-time platform. On the other hand, some level of resource and pro-
cessing control must be available to support the efficient design of hardware platforms.

Hardware implementations of multi-agent systems are still limited to single or a few
and non-mobile agents [13][15], and were originally proposed for low level tasks, for
example in [8] using agents to negotiate network resources. Coarse grained reconfigu-
ration is enabled by using FPGA technologies [13]. Most current work uses hardware-
software co-design methodologies and code generators, like in [14]. This work  pro-
vides more fine-grained agent reconfiguration and true agent mobility without relying
on a specific technology and employs high-level synthesis to create standalone hard-
ware and software platforms delivering the same functional and reactive behaviour.

There is related work concerning agent programming languages and processing ar-
chitectures, like APRIL [10] providing tuple-space like agent communication, and
widely used FIPA  ACL, and KQGML [7] focusing on high-level knowledge represen-
tations and exchange by speech acts, or model-driven engineering (e.g. INGENIAS,
[9]. But the above required resource and processing control is missing, which is ad-
dressed in this work.

There are actually four major issues related to the scaling of traditional software-
based multi-agents systems to the hardware level and their design:  
Ï limited static processing, storage, and communication resources, real-time process-

ing, unreliable communication, 
Ï suitable simulation environments for testing distributed and parallel multi-agent

processing on functional and operational level,
Ï suitable simplified agent-oriented programming models and  processing architec-

tures qualified for  hardware designs with finite state machines (FSM) and resource
sharing for parallel agent execution, 

Ï and appropriate high-level design and simulation tools offering MAS design on
programming level.

Traditionally agent programs are interpreted, leading to a significant decrease in
performance. In the approach presented here, the agent processing is directly imple-
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mented in standalone hardware nodes without intermediate processing levels and with-
out the necessity of an operating system. 

This work introduces some novelties compared to other data processing and agent
platform approaches:
Ï One common agent behaviour model, which is implementable on different process-

ing platforms (hardware, software, simulator).
Ï Agent mobility crossing different platforms in a mesh-like network and agent  in-

teraction by using a tuple-space database and global signal propagation aid solving
data distribution and synchronization issues in the design of distributed sensor net-
works.

Ï Support for heterogeneous networks and platforms covered by one design and syn-
thesis flow including functional behavioural and architectural simulation.

Ï A token-based pipelined multi-process agent processing architecture very well suit-
ed to hardware platforms with the Register-Transfer Level Logic offering opti-
mized computational resources and speed.

Ï A Petri-Net representation is used to derive a specification of the hardware process
and communication network, and performing advanced analysis like deadlock de-
tection. Timed Petri-Nets can be used to calculate computing time bounds to sup-
port real-time processing.

Ï A fast processing platform simulation on architectural level with large scale net-
works (with hundreds of nodes) and simulation of the processing of large scale
MAS (with hundreds of mobile agents).

The next sections introduce the activity based agent processing model, available
mobility and interaction, and the proposed agent platform architecture related to the
programming model. Finally, the suitability of the agent processing platform in large
scale networks is demonstrated by using a novel agent-based simulation technique for
the simulation of the entire platform and network architecture at process level. The
simulator can be integrated in an existing sensor network offering a simulation-in-the-
loop methodology.

2. Programming State-based Mobile Agents 

The implementation of mobile multi-agent systems for resource constrained embed-
ded systems with a particular focus on microchip level is a complex design challenge.
High-level agent programming and behaviour modelling languages can aid to solve
this design issue. To carry out multi-agent systems on hardware platforms, the activity-
based agent-orientated programming language AAPL was designed. Though the imper-
ative programming model is quite simple and closer to a traditional PL it can be used as
a common source and intermediate representation for different agent processing plat-
form implementations (hardware, software, simulation) by using a high-level synthesis
approach, shown in Fig. 1.  Commonly used agent behaviour models based on PRS/
BDI architectures with a declarative paradigm  (2APL, AgentSpeak/Jason), communi-
cation models (e.g. FIPA ACL, KQML), and adaptive agent models can be implement-
ed with AAPL providing primitives for the representation of beliefs or plans (discussed
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later). Agent mobility, interaction, and replication including inheritance are central
multi-agent-orientated behaviours provided by AAPL.

Fig. 1. From one common AAPL programming level to heterogeneous distributed net-
works (RTL: Register-Transfer Level, MT: Multi-Threading, CSP: Communicating Se-
quential Processes

Definition: There is a multi-agent system (MAS) consisting of a set of individual
agents {A1,A2,..}. There is a set of different agent behaviours, called classes C={AC1,
AC2,..}. An agent belongs to one class. A super class ACi can be composed of different
sub-classes {ACi,1,ACi,2,..}, sharing activities and transitions of the super class.  In a
specific situation an agent Ai is bound to and processed on a network node Nm,n (e.g.
microchip, computer, virtual simulation node) at a unique spatial location (m,n). There
is a set of different nodes N={N1, N2,..} arranged in a mesh-like network with peer-to-
peer neighbour connectivity (e.g. two-dimensional grid). Each node is capable to pro-
cess a number of agents ni(ACi) belonging to one agent behaviour class ACi, and sup-
porting at least a subset of C’ ⊆ C.  An agent (or at least its state) can migrate to a
neighbour node where it continues working.
AAPL Programming Model

The agent behaviour is partitioned and modelled with an activity graph, with activi-
ties representing the control state of  the agent reasoning engine, and conditional tran-
sitions connecting and enabling activities, shown in Fig. 3 (left side). Activities provide
a procedural agent processing by sequential execution of imperative data processing
and control statements. 

The activity-graph based agent model is attractive due to the proximity to the finite-
state machine model, which simplifies the hardware implementation.

An activity is activated by a transition which can depend on a predicate as a result of
the evaluation of (private) agent data related to a part of the agents belief in terms of
BDI architectures. An agent belongs to a specific parameterizable agent class AC, spec-
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ifying local agent data (only visible for the agent itself), types, signals, activities, signal
handlers, and transitions. The class AC can be composed of sub-classes, which can be
independently selected.

Plans are related to AAPL activities and transitions close to conditional triggering of
plans. Tables 1 and 2 summarize the available language statements. Their effects on a
multi-agent system is shown in Fig. 2. 

Agent Identifiers. Some statements like signal propagation require the identifica-
tion of agents. In a node-local scope this is the token identifier assigned to the agent
(Local LID). If an agent migrates, the LID can be extended by the relative displacement
(Δ) to a unique identifier in the global network scope (GID). But this enforces the
blocking of the token on the root node to avoid duplicates. Random generation of agent
identifiers can overcome this issue, which is applied in this work.  

Fig. 2. Effects of AAPL control statements at run-time

Tab. 1. Summary of the AAPL statements used to define the agent behaviour and control

Kind AAPL Statement Description

Agent Class 
Definition

agent AC (arguments) =
  definitions 
end;

Defines a new agent class AC with
optional arguments. The class
body consists of variable, activity,
and transition definitions.

Creation and 
Replication

id := new AC[.C] (args);
id := fork [C] (args);
kill(id);

Creates new agents at run-time.
They are created from the class
template, or forked from the par-
ent agent. A sub-class C can be se-
lected, too.
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Instantiation. Parameterized new agents of a specific class AC can be created at
runtime by agents using the new AC(v1,v2,..) statement returning a node unique
agent identifier. An agent can create multiple living copies of itself with a fork mecha-
nism, creating child agents of the same class with inherited data and control state but
with different parameter initialization, done by using the fork(v1,v2,..) statement.
Agents can be destroyed by using the kill(id) statement. Additionally, sub-classes
of an agent super class can be selected by adding the sub-class identifier.

Each agent has private data - the body variables -, defined by the var and var*
statements. Variables from the latter definition will not be inherited or migrated! Agent
body variables, the current activity, and the transition table represent the mobile data
part of the agents beliefs database. 

Statements inside an activity are processed sequentially and consist of data assign-
ments (x := ε) operating on agent’s private data, control flow statements (conditional
branches and loops), and special agent control and interaction statements, which can
block agent processing until an event has occurred.

Agent interaction and synchronization is provided by a tuple-space database server
available on each node (based on [10]). An agent can store an n-dimensional data tuple
(v1,v2,..) in the database by using the out(v1,v2,..) statement (commonly the first
value is treated as a key). A data tuple can be removed or read from the database by us-
ing the in(v1,p2?,v3,..) or rd(v1,p2?,v3,..) statements with a pattern tem-
plate based on a set of formal (variable,?) and actual (constant) parameters. These
operations block the agent processing until a matching tuple was found/stored in the

Data var x,y,z: datatype;
var* a,b,c: datatype;

Defines long- and short term
agent body variables. The latter
ones are not saved on migration or
inherited by children.

Activity activity [C.]A = 
  statements 
end;

Defines a new agent activity A,
which can be bound to a sub-class
C.

Reconfigura-
tion

activity+ (id,a1,a2,...);
activity‐ (id,a1,a2,...);

Adds or removes activities at run-
time for a specific agent id.

Transition transitions [C] = 
  transitions end;
   ai ‐> aj: condj; ...

Defines transitions at compile
time between activities ai and aj
with predicate condj. Can be used
to define a sub-class C, too.

Reconfigura-
tion

transition+ [C] (a1,a2,c);
transition* [C] (a1,a2,c);
transition‐ [C] (a1,a2);
                (id,..)

Changes transitions at run-time
(add, replace all, remove all). Can
be applied to a sub-class C or for a
specific agent id only.

Mobility moveto(Dir);
.. link?(Dir) ..
Dir={NORTH, SOUTH,
     WEST, EAST}

Migrates agent to a neighbour
node. The connectivity can be
tested by using the link? opera-
tion.

Kind AAPL Statement Description
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database. These simple operations solve the mutual exclusion problem in concurrent
systems easily. Only agents processed on the same network node can exchange data in
this way. Simplified the expression of beliefs of agents is strongly based on AAPL tuple
database model. Tuple values have their origin in environmental perception and pro-
cessing bound to a specific node location.

The existence of a tuple can be checked by using the exist? function or with atom-
ic test-and-read behaviour using the try_in/rd functions. A tuple with a limited life-
time (a marking) can be stored in the database by using the mark statement. Tuples
with exhausted lifetime are removed automatically (by a garbage collector). Tuples
matching a specific pattern can be removed with the rm statement.

Remote interaction between agents is provided by signals carrying optional param-
eters (they can be used locally, too). A signal can be raised by an agent using the
send(ID,S,V) statement specifying the ID of the target agent, the signal name S, and
an optional argument value V propagated with the signal. The receiving agent must
provide a signal handler (like an activity) to handle signals asynchronously. Alterna-
tively, a signal can be sent to a group of agents belonging to the same class AC within
a bounded region using the broadcast(AC,DX,DY,S,V) statement. Signals imple-
ment remote procedure calls. Within a signal handler a reply can be sent back to the ini-
tial sender by using the reply(S,V) statement.

Timers can be installed for temporal agent control using (private) signal handlers,
too. Agent processing can be suspended with the sleep and resumed with the wakeup
statements.

Migration of agents to a neighbour node (preserving the body variables, the pro-
cessing, and configuration state) is performed by using the moveto(DIR) statement,
assuming the arrangement of network nodes in a mesh- or cube-like network. To test if
a neighbour node is reachable (testing connection liveliness), the link?(DIR) state-
ment returning a Boolean result can be used.

Reconfiguration. Agents are capable to change their transitional network (initially
specified in the transition section) by changing, deleting, or adding (conditional) tran-
sitions using the transition♦(Ai,Aj,cond) statements. This behaviour allows the
modification of the activity graph, i. e., based on learning or environmental changes,
which can be inherited by child agents. The modification can be restricted to a sub-
class transition set, which is useful for child agent generation. Additionally, the ATG
can be transformed by adding or removing activities using the activity♦(Ai,Aj,
...) statements, which is only applicable for dynamic code-based agents not consid-
ered here.

Tab. 2. Summary of the AAPL statements used for interaction and communication

Kind AAPL Statement Description

Signal signal S:datatype;
handler S(x) = 
  statements end;
send(id,S,v); 
reply(S,v);
broadcast(AC,DX,DY,S,v);

Defines a signal S which can be
processed by a signal handler sim-
ilar to an activity. Signals are ei-
ther send to a specific agent id or
send to all agents of a specific
class within a region.
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3. Agent Platform Architecture and Synthesis

The AAPL model is a common source for the implementation of agent processing in
hardware, software, and simulation processing platforms. A database driven high-level
synthesis approach [1] is used to map the agent behaviour to these different platforms.
The agent processing architecture required at each network node must implement dif-
ferent agent classes and must be efficiently scalable to the microchip level to enable
material-integrated embedded system design, which represents a central design issue,
further focussing on parallel agent processing and optimized resource sharing.

Fig. 3. Pipelined Communicating Sequential Processes Architecture derived from a Pe-
tri-Net specification and relationship to the activity-transition graph. Signals are handled
asynchronously and independently from the activity processing.

Tuple Space 
Database

out(v1,v2,..);                   
.. exist?(v1,?,..) ..
in(v1,x1?,v2,x2?,...);       
rd(v1,x1?,v2,x2?,...);
try_in(timout,v1,..);
try_rd(timeout,v1,..);
mark(timeout,v1,v2,..);   
rm(v1,?,..);

Synchronized data exchange by
agents using the tuple space oper-
ations with tuples and patterns. A
marking is a tuple with a limited
lifetime. Commonly, the first tu-
ple value is treated as a key, e.g.
classifying the tuple.

Timer and 
Blocking

timer+(timeout,S); 
timer‐(S); 
sleep; wakeup;

A timer can be used to raise a sig-
nal S. Agents can be suspended
and be woken up.

Kind AAPL Statement Description
- 8 - 2015



DOI:10.1007/978-3-319-25210-0_5
Agents and Artificial Intelligence

LNAI 8946, Springer

Stefan Bosse
3.1. The RPCSP Agent Platform
This processing platform - very well matching microchip-level designs - imple-

ments the agent behaviour with reconfigurable pipelined communicating processes
(RPCSP) related to the Communicating Sequential Process model (CSP) proposed by
Hoare (1985).  The activities and transitions of the AAPL programming model are
merged in a first intermediate representation by using state-transition Petri Nets (PN),
shown in Fig. 3. This PN representation allows the following CSP derivation specify-
ing the process and communication network, and advanced analysis like deadlock de-
tection. Timed Petri-Nets can be used to calculate computing time bounds to support
real-time processing. 

Fig. 4. Interaction of the agent, signal, and network manager with  activity processes

Keeping the PN representation in mind, the set of activities {Ai} is mapped on a set
of sequential processes {Pi} executed concurrently. Each subset of transitions {Ti,j} ac-
tivating one common activity process Pj is mapped on a synchronous n:1 queue Qj pro-
viding inter-activity-process communication, and the computational part for transitions
embedded in all contributing processes {Pi}, shown in Fig. 3. Changes (reconfigura-
tion) of the transition network at run-time are supported by transition tables, shown in
- 9 - 2015
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Fig. 4. Body variables of agents are stored in an indexed table set. Activity processes
are partitioned into sub-states, at least one computational and one transitional state, dis-
cussed below.

Each sequential process is mapped (by synthesis) on a finite-state machine and a
data path using a register-transfer architecture (RTL) with mutual exclusive guarded
access of shared objects,  all implemented in hardware.

This pipeline architecture offers advanced resource sharing and parallel agent pro-
cessing with only one activity process chain implementation required for each agent
class. The hardware resource requirement (digital logic) is divided into a control and
a data part. The control part is proportional to the number of supported different agent
classes. The data part depends on the maximal number of agents executed by the plat-
form and the storage requirement for each agent.

Token-based Processing. Agents are represented by tokens (natural numbers equal
to the agent identifier, unique at node level), which are transferred by the queues be-
tween activity processes depending on the specified transition conditions and the en-
abling of transitions. This multi-process model is directly mappable to Register-
Transfer Level (RTL) hardware architectures. Each process Pi is mapped on a finite
state machine FSMi controlling process execution and a register-transfer data path. Lo-
cal agent data are stored in a region of a memory module assigned to each individual
agent. There is only one incoming transition queue for each process consuming tokens,
performing processing, and finally passing tokens to outgoing queues, which can de-
pend on conditional expressions and body variables. There are computational and IO/
event-based activity statements. The latter ones can block the agent processing until an
event occurs (for example, the availability of a data tuple in the database). 

Agents in different activity states can be processed concurrently. Thus, activity pro-
cesses which are shared by several agents may not block. To prevent blocking of  IO
processes, not-ready processes pass the waiting agent to the agent manager.

Activity Sub-State Partitioning and Event-based Processing.  To handle I/O-
event and migration related blocking of statements, activity processes executing these
statements are partitioned  into sub-states Ai ⇒ {ai,1,ai,2,...,ai,TRANS} and a sub-state-
machine decomposing the process in computational, I/O statement, and transitional
parts, which can be executed sequentially by back passing the agent token to the input
queue of the process (sub-state loop iteration). The control state of an agent consists
therefore of the actual/next activity Ai/Ai+n and the activity sub-state aj(Ai) to be exe-
cuted. Agents which wait for the occurrence of an event are passed to the agent manag-
er queue releasing the activity process. After the event occurred, the agent token is
passed back to the activity process continuing the execution, shown in Fig. 4. Usually
I/O events are related to tuple-space database (TSDB) access (in-operation is blocked
until a matching out-operation is performed). For this reason the TSDB module is di-
rectly connected to the agent manager which is notified about the keys of new tuples
stored  in the database releasing waiting consumer agents. The following annotated
code snippet shows the sub-state partitioning and sub-state transitions (→: immediate,
⊥: blocked and passed to the agent manager).
- 10 - 2015
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  activity init =  
  init1: dx := 0; dy := 0; h := 0; → init2   
  init2: if dir <> ORIGIN then
           moveto(dir); ⊥ init3
           init3: case dir of
                    | NORTH => backdir:=SOUTH; 
                    | SOUTH => backdir:=NORTH; 
                    | WEST =>  backdir:=EAST;  
                    | EAST =>  backdir:=WEST;  
                  end; → init4
         else
           live:=MAXLIVE; backdir:=ORIGIN; → init4
         end;
  init4: group := Random(integer[0..1023]);
         out(H,id(SELF),0); → init5
  init5: rd(SENSORVALUE,s0?);  ⊥ initTRAN
  initTRAN: Transition Computation

If there are conditional outgoing transitions which cannot actually be satisfied, the
activity process can be suspended (by using the AAPL sleep statement) by transfer-
ring the agent token to the agent manager. A signal handler of the agent can be used to
wake up the agent again (by using the wakeup statement).

Agent and Network Managers. The agent manager is connected with all input
queues of the activity processes and with the network managers handling remote agent
migration and signal propagation. Agents are associated with control state structures.
Agent tokens are injected by the agent manager after agent creation,  migration, or re-
sumption. 

The agent manager uses agent tables and caches to store information about created,
migrated, and passed through agents (req., for ex., for signal propagation). 

Transitions and Reconfiguration. Each activity process has a final transition sub-
state ai,TRAN which tests for enabled transitions in the current context. All possible (en-
abled and disabled) transitions outgoing from an activity are processed in the transition
sub-state of each activity process.  If a condition of an enabled transition is true, the
agent token is passed to the respective destination queue.

Configuration of the transition network at run-time modifies transition tables, stor-
ing the state of each transition {enabled, disabled}. There is one table set for each indi-
vidual agent which  can be divided further in the super class and possible sub-classes.

Though the possible reconfiguration and the conditional expressions must be known
at compile time (static resource constraints), a reconfiguration can release the use of
some activity processes and enhances the utilization for parallel processing of other
agents. The transition network is implemented with selector tables in case of the HW
and SW implementations, and with transition lists in case of the SIM implementation. 

Reconfiguration can aid to increase and optimize utilization of the activity process
network populated by different sub-classed agents using only a sub-set of the activities.

Migration of agents requires the transfer of the agent data and the control state of
the agent together with a unique global agent identifier (extending the local id with the
agent class and the relative displacement of its root node) encapsulated in messages.
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Messages carrying the state of agents consisting of the body variables (only the
long-term part) and the control structure with the current activity, the sub-state which is
entered after migration, and agent identifiers (id, Δ). Furthermore messages are used to
carry signals. The network managers (input & output) perform message encoding, de-
coding, and delivery. Migration requires at least one more activity sub-state. After mi-
gration, the next sub-state of the last activity is executed.

Tuple-Space Database. Each n-dimensional tuple-space TSn (storing n-ary tuples)
is implemented with fixed size tables in case of the hardware implementation, and with
dynamic lists in the case of the software and simulation model implementations. The
access of each tuple-space is handled independently. Concurrent access of agents is
mutually exclusive. The HW implementation implicates further type constraints, which
must be known at design time (e.g. limitation to integer values).  

Signal Handling. Signals are handled asynchronously by activating signal handlers,
implemented by a process and a signal handler input queue. The signal manager is re-
sponsible for the creation and propagation of signals, shown in the bottom of Fig. 4.
Signal tokens represent tuple values (signal, argument, dst-id, src-id, Δ). Remote sig-
nals are processed by the signal and network managers,  which encapsulate signals in
messages sent to the appropriate target node and agent.

Replication of activity processes sharing the same input queue offers advanced par-
allel processing of multiple agents for activities with high computing times reducing
the mean computational latency.
3.2. Software Platform

The already introduced RPCSP architecture can be implemented in software, too. In
this case the activity processes are implemented with light weighted processes
(threads) communicating through queues, providing token based agent processing, too.
The software platform includes  the agent and signal managers, tuple space databases,
and networking. Software platforms can be directly connected to hardware platforms
and vice versa. They are compatible at the interface (message) and agent behaviour
level. 

Implementing the RPCSP architecture in software has the advantage of low-re-
source requirements and the exploitation of parallelism by multi-processor or multi-
core architectures including advanced hyper-threading techniques. The number of
threads and resources are known and allocated in advance, which can be mandatory for
hard real-time processing systems.
3.3. Simulation Platform

In addition to real hardware and software implemented agent processing platforms
there is the capability of the simulation of the agent behaviour, mobility, and interac-
tion on a functional level. The SeSAm simulation framework ([5]) offers a platform for
the modelling, simulation, and visualization of mobile multi-agent systems employed
in a two-dimensional world. The behaviours of agents are modeled with activity graphs
(specifying the agent reasoning machine) close to the AAPL model. Activity transitions
depend on the evaluation of conditional expressions using agent variables. Agent vari-
ables can have a private or global (shared) scope. Basically SeSAm agent interaction is
performed by modification and access of shared variables and resources (static agents). 
- 12 - 2015
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Simulation of complex MAS on behavioural level and the methodology using the
SeSAm simulator was already demonstrated in [16], mapping AAPL agents of the MAS
one-to-one to SeSAm agents. In this work instead the RPCSP agent processing platform
is simulated  with the agent-based SeSAm simulation framework, discussed in detail in
the following section. This simulation provides the testing and profiling of the pro-
posed processing platform architecture in a distributed network world. 

The simulator is also fully compatible with the software and hardware platforms on
behavioural and interface level and can be integrated in an existing real-world network,
offering simulation-in-the-loop capabilities.
3.4. Synthesis

The database driven synthesis flow (details in [1]) is shown in Fig. 5 and consists of
an AAPL  front end, the core compiler, and several backends targeting different plat-
forms. The AAPL program is parsed and mapped on an abstract syntax tree (AST). The
first compiler stage analyses, checks, and optimizes the agent specification AST. The
second stage is split in three parts: an activity to process-queue pair mapper with sub-
state expansion,  a transition network builder, manager generators, and a message gen-
erator supporting agent and signal migration. Different outputs can be produced: a
hardware description enabling SoC synthesis using the ConPro SoC high-level synthe-
sis framework (details inside [6]), a software description (C) which can be embedded
in application programs, and the SeSAm simulation model (XML). The ConPro pro-
gramming model  reflects an extended CSP with atomic guarded actions on shared
global resources. Each process is implemented with a FSM and a RT data path. The
simulation design flow includes an intermediate representation using the SEM pro-
gramming language, providing a textual representation of the entire SeSAm simulation
model, which can be used independently, too.

Fig. 5. Simplified overview of the high-level synthesis flow architecture
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All implementation models (HW/SW/SIM) provide equal functional behaviour, and
only differ in their timing, resource requirements, and execution environments. Some
more implementation and synthesis details follow.

4. Platform Simulation

This section will demonstrate that agent-based simulation is suitable to for the sim-
ulation of the RPCSP agent processing platform itself and large scale distributed net-
works, e.g., sensor networks, using the agent-based SeSAm simulator [5]. Simulation
and analysis of parallel and distributed systems are a challenge. Performance profiling
and the detection of race conditions or deadlocks are essential in the design of such sys-
tems, where the agent processing platform is a central part. Furthermore, platform sim-
ulation allows the estimation and optimization of static resources like agent tables or
queues, completed with the ability to study the temporal behaviour of the entire net-
work including communication treated as a distributed virtual machine, e.g., identify-
ing bottlenecks for specific task situations, hard to monitor in technical systems.

Behavioural simulation [1][16] maps agents of the MAS to be tested directly and
isomorphic on agent objects of the simulation model. Platform simulation uses agents
to implement architectural blocks like the agent manager or activity processes. Hence,
agents of the MAS are virtually represented by the data space of the simulator, and not
by the agent objects themselves. 

The simulation of the processing platform with large scale networks processing
large scale MAS aid to modify and refine the RCSP architecture, and to tune the static
resource parameters like token pool and queue sizes or activity process replication to
optimize timing. The platform simulation allows a fine grained estimation of the re-
quired resources. 

The networks to be simulated (aka. the simulated world) consist of nodes arranged
in a two-dimensional mesh grid, with each node connected to his four neighbour nodes,
shown in Fig. 6 for a 10 by 10 sensor network with dedicated computational nodes at
the outsides of the network. The entire platform and network system is partitioned into
different non-mobile agent and resource classes (a resource is a passive agent with a
data state only):

World Agent. The world agent creates all node agents and provides some network
wide services. The world agent implements a reduced physical environment, e.g., by
creating sensor signals or by disabling (destroying) connections between network
nodes. Connections are represented by resources (passive agents providing only a geo-
metric shape and body variables).

Node Agent. Each node is represented by a node agent,  basically providing a com-
mon interface to data structures and tables required by the node managers and the ac-
tivity processes. The node agent creates all the platform agents at the beginning of the
simulation run.

Manager Agent. There is one "agent manager" agent for each agent class which is
supported on the network node platform.

Network Manager Agents. There are two network manager agents. One input net-
work manager agent handling incoming messages from neighbour nodes, decoding
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messages, creating agent or signal tokens, and finally passing the tokens to the agent or
signal manager. The second output network manager agent is responsible for encoding
and sending of messages carrying agent states or signals.

Activity Process Agents.  For each agent class and each activity process of an agent
class there is one activity processing agent performing token-based agent processing.
The sub-states of an activity process are implemented by a simple sub-state selector
and token loop-backing providing a sub-state FSM. Each activity process agent has lo-
cal storage and an global visible token input queue. 

Monitor Agent. There is one monitor agent per world collecting temporal resolved
statistical data, finally writing the results to a CSV data file.

Token and Queues. The agent token queues are implemented with lists in the body
variable space of each node agent. The size of the list can be monitored at run-time to
detect resource underflow. Mutex guarded operations (inq,outq) allow concurrent ac-
cess to the queues by different agents (manager, activity processes,..).  Tokens are re-
cord structures with additional descriptive entries like the current queue they are stored
in. 

Virtual Agent. For visualization and debugging there is a mobile virtual agent re-
source  representing an agent to be processed by a specific agent node platform. The
virtual agent references the data and control state of an agent.

Fig. 6. Simulation world of a sensor network (left) consisting of 10x10 nodes and the
network populated with non-mobile platform and virtual mobile agents (right)

The new platform simulation is compared with the behavioural simulation from pre-
vious work in Tab. 3 for the simulation of a self-organizing MAS used for feature ex-
traction in a sensor network. The behaviour model of the MAS is described in detail in
[16]. It bases on a distributed divide-and-conquer approach. The number of (non-mo-
bile) agents implementing the processing platform depends mainly on the number of
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activities decomposing the agent behaviour and the number of agent classes to be sup-
ported on the platform. For this example, the platform simulation model requires five
times more agents and twenty times more computing time than the behavioural model.
But the required resources and computing time for the fine-grained platform simulation
is still reasonable and can be handled well with low end computers.

The analysis of a simulation run is shown in Fig. 7. It shows the temporal resolved
analysis of the population of explorer agents of the MAS and the utilization of the PC-
SP network for nodes processing actually agents. There are nodes capable to process
up to four agents simultaneous (speedup 4, in different activity states and processes).
The mean speedup factor is about 1.5 for all nodes actually processing agents.

Both platform and behavioural simulation deliver the same computational results of
the distributed MAS.

Tab. 3. Comparison of behavioural and platform simulation of the same MAS [16] using 
the SeSAm simulator

Fig. 7. Analysis of the MAS simulation: Left plot shows the temporal development of the
agent population (explorer agent) and the rise of found features in the sensor network,
right plot shows the utilization of the platform processes (peak parallel agent processing
on one node, mean parallel active processes per node, and mean agent tokens queued per
active node).  

Behavioural Simulation Platform Simulation

Number of Agents and 
Resources (dynamic=mo-
bile)

static:300 agents, 700 res.; 
dynamic: 130 explorer 
agents

static: 1600 agents, 700 
res.; dynamic: 130 virtual 
agent resources

Simulation time includ-
ing setup of simulation, 
with a correlated cluster 
scenario of 8 nodes, until 
MAS has finished work. 

60 simulation steps in 5 s 
(on 1.2 GHz Intel U9300, 
3GB)

280 simulation steps in 60 
s (on 1.2 GHz Intel 
U9300, 3GB)

Peak Parallel Agent Proc. 
Mean Parallel Act. Proc. 
Mean Queued Act. Agents 
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5. Conclusions

A novel design approach using mobile agents for reliable distributed and parallel
data processing in large scale networks of low-resource nodes was introduced. An
agent-orientated programming language AAPL provides computational statements and
statements for agent creation, inheritance, mobility, interaction, reconfiguration, and
information exchange, based on agent behaviour partitioning in an activity graph,
which can be directly synthesized to the microchip level by using a  high-level synthe-
sis approach. The high-level synthesis tool also enables the synthesis of different pro-
cessing platforms from a common program source, including standalone hardware and
software platforms, as well as simulation models offering functional and behavioural
testing.  The different platform implementations are compatible at the behavioural and
message-interface level.

Agents of the same class share one virtual machine  consisting of a reconfigurable
pipelined multi-process chain based on the CSP model implementing the activities and
transitions, offering parallel agent processing with optimized resource sharing. Unique
identification of agents does not require unique absolute node identifiers or network
addresses, a prerequisite for loosely coupled and dynamic networks (due to failures, re-
configuration, or expansion). The migration of an agent to a neighbour node takes
place by migrating the data and control state of an agent using message transfers. Two
different agent interaction primitives are available: signals carrying data and tuple-
space database access with pattern templates.

Reconfiguration of the activity transition network offers agent behaviour adaptation
(which can be inherited by children) at runtime and improved resource sharing for par-
allel agent processing. 

A novel agent-based simulation of the agent processing platform and large-scale
networks with a MAS case study demonstrated the suitability of the proposed program-
ming model, processing architecture, and synthesis approach. The platform simulation
offers advanced study and visualization of the platform behaviour, performance, and
synchronisation issues in a distributed system under real world conditions with respect
to the executed MAS. The platform simulation was compared with earlier behavioural
agent simulations using the same MAS. Though there is a significant increase of the re-
quired data resources and computation time, this simulation approach is well suited for
large-scale MAS simulation.
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