SEM PROGRAMMING LANGUAGE

SEM Programming Language

SEM SeSAm Simulator Programming Language

SYNOPSYS m

Introduction to and overview of the Programming Language SEM of-
fering the specification of a simulation and behaviour model for state-
based agents used for the SeSAm simulator environment.

Author: Stefan Bosse

SYNOPSYS

DESCRIPTION

AGENTS

DEFINTIONS

DATA TYPES

VALUES

EXPRESSIONS

PATHS

LISTS, ITERATORS, ARRAYS
SEQUENTIAL COMPOSITION
BRANCHES

Loops

SHAPES 11
EXAMPLES 12
VERSION 18

~
SO N U R W~~~

DESCRIPTION

The activity-based functional SEM programming language provides
statements for describing the behaviour of state-based agents by us-
ing activities and transitions connecting and enabling activities. Ac-
tivities and functions provide generic functional statements to
perform computation and actions. The SEM programming language
is a text level design interface for the Multi-Agent System (MAS) sim-
ulation environment SeSAm (Kltigel et al.), which provides only a GUI.
It is closely related to the SeSAm agent and world model, but is ex-
tended with some convenient functions and statements, easing the
design of complex MAS.

AGENTS

An agent belongs to a particular agent class defining body variables,
activities, and transitions between activities, summarized in Table 1.

1.28/4/14

SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE m

SEM PROGRAMMING LANGUAGE AGENTS

SEM Statement Description

agent ac (shapedef) =
definitions
variables
import
activities
transitions

Definition of an agent class consist-
ing of variable definitions, import of
feature classes, activities, and transi-
tions. The shape definition parame-
ter list is optional.

activities
transitions
end;

end;
world wc = Definition of an world class consist-
definitions ing of variable definitions, import of
variables feature classes, activities, and transi-
import tions.

resource rc (shapedef) =
definitions

Definition of a resources class con-
sisting of variable definitions and im-

def mutable x =

def private mutable x =
expr end;

def x:T = expr end;

expr end;

variables port of feature classes. The shape
import definition parameter list is optional.
end;
def x = expr end; Definition of global read only, global

mutable, and private data storage
objects of data type DT derived from
the initial value or specifified with an
explcit type declaration.

activity a =
[statements] before;
[statements] ;
[statements]
transitions
end;

after;

Definition of an agent activity repre-
senting the state of the agent. State-
ments of the activity are executed in
sequential order before, immediate-
ly, or after an activity was activated
by a transition.

transition (A;,A4;);

transition (Ai,Aj,condij);

Definition of agent state transitions
(conditional depending on evalua-
tion of a boolean expression and un-
conditional).

SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

DEFINTIONS

SEM PROGRAMMING LANGUAGE

SEM Statement

Description

feature fc = Definition of a feature class includ-
definitions ing variable and function definitions.
end; Within agent, world or feature class-
open fc; es other feature classes can be im-
ported by using the open
statement.
DEFINTIONS
Value (variable), function, and type definitions are summarized in Tab.
2
Tab.2. Definition of types, values, and functions

Statement Description

def v:DT = expr end;

type e = {X,Y,Z,..}; Definition of an enumeration (sum) type
with symbol type elements X,Y,Z...

type r = (Definition of a record structure type con-

x=T1, sisting of elements x,y.. with specified

y=T2,..); data types DT. Each recory type definition

introduces an automatic definition of a

= type constructor function with same

fun r: TL1*T2*.. name, which can be used in expressions

- r; to create a record type value.

def v = expr end; Definition of an immutable (constant) and

def mutable v = mutable value (variable). The type is ei-

expr end; ther derived from the expression (not al-

ways possible) or specified explicitly by an
additional type declaration.

def £ = fun x,y,.. —
expr end;
def £ = fun
x:T1,
yv:T2,.. —
expr end;

Definition of a (named) function with
function parameters x,y. The datatype of
the parameters can be specified explicitly
by an additional type declaration. Type in-
ference of function parameters is limited.

SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

SEM PROGRAMMING LANGUAGE

DATA TYPES

Statement

Description

fun F
— RT ;

T1*T2*..

Declaration of a function type interface

(supported only for builtin primitive func-

tions).

m DATA TYPES

Predefined ordinal data types DT are summarized in Table 7.

Tab.3. Ordinal data types DT

APL Statement Type DT Description

integer INT Signed integer

double REAL Floating point type

string STRING Text string consisting of
characters

boolean BOOL Boolean type (with value
set{true, false}.

void - Empty type

'a list LIST Polymorphic and concrete

DT list list type

"a iterator ITERATOR |Polymorphic and concrete

DT iterator iterator type

activity ADT Activity type

color ADT Simulation object color
type

objclass ADT Agent class type

objinstance ADT Agent class instance type

position ADT Simulation object position
type

simobject ADT Simulation object type

spatialinfo ADT Spatial info type

VALUES

SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

EXPRESSIONS

SEM PROGRAMMING LANGUAGE

Values of differente data types DT can appear in expressions and as-
signments, summarized in Table 9.

Tab.4. Valuesand data types DT
Value Type Description
-2, -1, 0, 1 ,2|INT Signed integer number
/3 .4, (decimal format)
-2.41,..,2.41, REAL Floating type number (deci-
mal format)
"abc" STRING String (character array)
true, false BOOL Boolean value
{v1i,v2,..} LIST List of values and empty list
{}
[|vi,v2,..]|] ARRAY Array of values
T(vl,v2,..) RECORD Record value constructor
T(el:vl,...) function for record type T
with optional labels specify-
ing the record element.
Aclass CLASS Instance of an agent class
EXPRESSIONS

Expressions are used in assignments, branches, function applications,
and loops. There are arithmetic, relational, and boolean operations.

Tab.5. Arithmetic, relational, and boolean/logical (bitwise) operators
with applicable data types
Operator Type Description
+,-,%,/ INT, REAL Addition ,Subtraction (Ne-
gation), Multiplication, Divi-
sion
% INT Modulo division

SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

SEM PROGRAMMING LANGUAGE PATHS

Operator Type Description

< <= > >= = <> INT, REAL Lower than, lower equal
than, greater than, greate
equal than, equal, not equal.

and, or , not BOOL Boolean operators

(x::DT) DT’ -> DT Type casting of variables
only

float (x) DT -> REAL Type conversion (applicable

round (x) REAL -> INT to expressions, values, vari-

trunc (x) REAL -> INT ables)

floor (x) REAL -> INT

ceiling(x) REAL -> INT

int (x) DT -> INT

char (x) DT -> CHAR

All operators of an expression must have the same type. Explicit type
conversion can be used to convert a native data type to the expres-
sion type.

Function application is provided by using the function name and an
argument list, which can be empty (Def. 1). Arguments containing
expressions are evaluated before function application. Function ap-
plications can be embedded in expressions.

Def.1. Function application (f) and procedure execution (p) with argu-
ments, w/o arguments

dst := fl(argl,arg2,...);
dst := f();
expr(f(...))
plargl,arg2,...);
pQ);

PATHS

Access of objects (variables) from other agents is performed by using
paths, summarized in Tab. 6. A path selector requires a root variable
pointing to a valid simulation object. Path selectors can be used in ex-
pressions and on the LHS of an assignment.

m SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

LisTS, ITERATORS, ARRAYS SEM PROGRAMMING LANGUAGE

Tab.6. Path selectors

Statement Description

def x:simobject = A variable x containing a valid simula-
null end; tion object reference is the root ele-
x->class->vref ment of the path selector, which

resolve a variable vref of an agent be-
longing to the specified class.

LiSTS, ITERATORS, ARRAYS

Lists are dynamic data structures, which can be modified at run-time,
summarized in Table 11. Iterators are are derived from lists and are
used by iterative functions provided by SeSAm. Some function except
lists directly, other require conversion to an iterator object.

There is no array support in SeSAm. For this reason, arrays are emulat-
ed using hash tables. The SEM language provides limited array sup-
port.

Tab.7. Summary of list definitions and their usage

Statement Data Type DT Description
def L:DT list = * LIST Definition of a list variable
{} end; initialized with an empty

list. Initialiazation with
empty lists requires the
type declaration of the
variable, otherwiese type
inference is used to deter-
mine the list type.

L := {vi,v2,..}; |* LIST Assignment of a new list to
a list variable.

SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE SEM-7

SEM PROGRAMMING LANGUAGE SEQUENTIAL COMPOSITION

Statement Data Type DT Description
{vi,v2,v3,..} * LIST List of values
L. [expr] * LIST Selection of a list element
L. [head] using an index expression
L. [tail] (head and tail are key-

words - the tail index is
evaluated at run-time).

L. [expr] := e; * LIST Modifies a selected list ele-

L. [head] := e; ment using an index ex-

L. [tall] := e; pression.

Le{vi,v2,..} * LIST Concatenation of lists

e :: L * LIST Add an element to the top
of the list L.

L ::+ e; * LIST Append new element e at

L +:: e; the end or before the head
of the list L.

X ::- L; * LIST Remove last or first ele-

X -:: L; ment form list L and assign
the removed element to
the variable x.

fun AsIterator: * LIST Functions for conversion

'a list -»> * ITERATOR between iterators and lists.

'a iterator;
fun AsList:

'a iterator ->

'a list;

SEQUENTIAL COMPOSITION

Statements in functions and activities are executed strict sequentially.
Statements S1; S2; S3;... separated by a semicolon must be
wrapped with a block statement, summarized in Tab. 8

m SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

BRANCHES SEM PROGRAMMING LANGUAGE

Statement Description

[Generic block which can be used in
statementl; functions or nested activity state-
statement2; ments. Statements grouped in a block
.. are executed in a strict sequential or-
statementn der.

1;

BRANCHES

There are different branch statements available. They pass the pro-
gram flow to an alternative statement or a block of statements de-
pending on values. Branches can appear within block statements in
functions or activities. There are functional counterparts to the proce-
dural statements which may appear in expressions (conditional ex-
pressions).

Tab. 10. Procedural and functional branch statements

Statement Kind Description

if cond then Boolean Branch Depending on the result of
statementl Procedural the boolean expression cond
else statemento; a branch occurs either to

statment1 (expr=true) or to
the optional alternative
statementO (cond=false).

if cond then Boolean Branch Depending on the result of
exprl Functional the boolean expression cond
else expr2 either exprl (cond=true) or

the required expr0
(cond=false) is evaluated
and its value is returned.

SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE m

SEM PROGRAMMING LANGUAGE LooPrs

Statement Kind Description

case expr of Multi-value Branch | Different constant values are
| vi => stmti; Procedural compared with the result of
| v2 => stmt2; the expression expr and the

end; respective statements are

selected on successfull

matching. There is no de-
fault else case (matching
all other values)!

case expr of Multi-value Branch | Different constant values are
| vi => expri Functional compared with the result of
| v2 => expr2 the expression expr and the

respective expressions are
evaluated on successfull
matching. There is no de-
fault else case (matching
all other values)! A functional
case branch must be com-
plete and must contain all
possible cases (so it is limited
to enumeration types).

Looprs

There are different loop statements available. Each loop repeats the
execution of the loop body as long as a boolean condition is satified.
A counting loop iterates a list of values, either specified explicitly by a
set/list or implicitly by a range set constructor.

W SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

SHAPES

SEM PROGRAMMING LANGUAGE

Tab.11. Loop statements

Statement

for i =

a to|downto b
do

statement
done;

for i in x

for i in

{v1,..}

Kind
Counting Loop

Description

The for-loop executes the
loop body statements for
each element in the iterator
list, either a range of values
or a set/list (variable x) of val-
ues. The loop iterator vari-
able i holds the current value
taken from the list.

The range includes the limit-
ing values a and b.

while expr do

Conditional Loop

The while-loop executes the

statement loop body as long as the
done; boolean expression expr is
true. The test of the boolean
expression is performed be-
fore each loop iteration.
SHAPES

Agent and resources classes are relate dto spatially located geometric
objects, which can be (initially) specified as a parameter list of a class.

Tab. 12. Shape parameter

Statement Kind Description

color:color COLOR Shape colors: grey,
lightgrey, yellow,
green, blue, red,
orange.

shape: shape GEOMETRY Shape geometry: rectan-

gle, cir-

cle,

square,
ellipse.

SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

SEM PROGRAMMING LANGUAGE EXAMPLES

Statement Kind Description
size:{width, GEOMETRY Shape size specifying the
height} width and height of the

shape (double value).

center: {x0, POSITION Relative shape center point

m y0} (double value).

£fill:bool COLOR Shape fill attribute (true/

false).

EXAMPLES

Ex. 1. Resource class definitions

resource link (color:grey,
shape:rectangle,
size:{2.0,2.0},center:{1.0,1.0}) =
def mutable Node = Position(0,0) end;
def mutable Link = NORTH end;
end;
resource connection (color:blue,
shape:rectangle,
size:{2.0,2.0},
center:{1.0,1.0}) =
def mutable Nodel:simobject = null end;
def mutable Node2:simobject = null end;
end;

type Stats = (
stat_index = integer,
stat_event integer,
stat_dist = integer,
stat_explorer = integer,
stat_explorer child = integer,
stat_features = integer
)i
type Direction = {
NORTH,
WEST,

W SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

EXAMPLES SEM PROGRAMMING LANGUAGE

EAST,
SOUTH,
ORIGIN
}i
type Event =
NOEVENT,
TIMEOUT,
WAKEUP
}i
type Timer = (
timer val = integer,
timer event = Event

)i

Ex. 3. Feature class definitions

feature env =
def private mutable _env_ tempobj:simobject =
null end;
def mutable blocked = false end;
def mutable errno = EOK end;

def private mutable env vd = 0.0 end;
def private mutable env vi = 0 end;
def private mutable env i = 0 end;
def private mutable env_j = 0 end;
def private mutable env mat:integer list list =
{} end;
def private mutable env _start time = 0.0 end;
def private mutable env_in await = false end;
def private mutable _env vec:integer list =
{} end;
def AbsI = fun v:integer ->
[
_env_vd := Abs((v::double)) ;
_env_vi := (_env_vd::integer)
1; env vi

end;

def AwaitDelay = fun tmo:double ->
if env _in await then

[

SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE W

SEM PROGRAMMING LANGUAGE EXAMPLES

if ((GetTime()-_env_start time)>tmo) then

[

_env_in await := false;
blocked := false

]

]

m else

[
_env_in await := true;
_env_start time := GetTime();
blocked := true

-- CREAT AGENT OF CLASS agentclass
def CreateAgent = fun x:integer,y:integer,
agentclass:objinstance ->
CreateObjectAndRemember (agentclass,
(fun obj:simobject ->
[
BeamTo (GetSpatialInfo (obj),
CreatePos ((x::double)*10.0+5.0,
(y::double) *10.0+5.0))

-- CREATE AGENT OF CLASS agentclass AND
-- RETURN SIMOBJECT
def CreateAgentAndReturn =
fun x:integer,y:integer,
agentclass:objinstance ->
CreateObjectAndRemember (agentclass,
(fun obj:simobject ->
[
_env_tempobj := obj;
BeamTo (GetSpatialInfo (obj),
CreatePos ((x::double)*10.0+5.0,

(y::double) *10.0+5.0))
1;)); _env _tempobj

W SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

EXAMPLES SEM PROGRAMMING LANGUAGE

end;
-- GET (ONE) AGENT OF SPECIFIED CLASS AT
-- CURRENT POSITION

def GetAgent = fun thisclass:objclass ->

GetFirst (Select (m
(fun obj:simobject ->

Distance (GetSpatialInfo (obj),
GetSpatialInfo (GetCurrentSimObject ()))
= _1)1
GetAllObjectsOfType (thisclass, true, true)

-- GET MATRIX ELEMENT mat (i,j) WITH
-- col=0,..,cols-1,row=0,..,rows-1
def GetMatrixI = fun mat:integer list list,
row:integer,col:integer ->
GetNth (col, GetNth (row, mat))
end;

-- COMPUTE MAT1-MAT2 (matrix element subtraction)

def MatrixSub = fun matl:integer list list,
mat2:integer list list ->

_env _mat := {};
_env_j := 0;
ForElements ((fun row:integer list ->
[
_env_mat ::+ VectorSub (row,
GetNth(env j,mat2));
_env_j := env j + 1
1;
) ,matl)
1; _env mat
end;
def VectorSub = fun vecl:integer list,

vec2:integer list -»>

SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE W

SEM PROGRAMMING LANGUAGE EXAMPLES

[

env_vec := {};
env i := 0;
ForElements ((fun col:integer ->

[

_env_vec ::+ (col-vec2.[env i]);
m _env i := env i + 1
1;

), vecl)
1; _env vec
end;

-- SET MATRIX ELEMENT mat(i,j) WITH
-- i=0,..,cols-1,j=0,..,rows-1

def SetMatrixI =
fun mat:integer list list,
row:integer,col:integer,v:integer ->
[
_env_vec := GetNth(row,mat) ;
SetNth(col,v, env _vec);
SetNth (row, env_vec,mat)

-- I AM THIS SIM OBJECT

def Self = fun () -> GetCurrentSimObject ()
end;

-- CHANGE COLOR
def SetColor = fun thisobj:simobject,r,g,b ->
ChangeShapeColor (GetSpatialInfo(thisobj),
CreateColor(r,g,b))
end;
end;

m SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

EXAMPLES SEM PROGRAMMING LANGUAGE

Ex. 4. Agent class definitions

agent sampling (color:orange,
shape:circle,fill:true,size:{2.0,2.0},
center:{3.0,1.0}) =
use os;
use env;
use ts_client;

def mutable adc = 0 end;

def mutable Pos = Position(0,0) end;

def mutable self:simobject = null end;
def mutable myworld:simobject = null end;
def mutable Parent:simobject = null end;
def mutable sampled = 0 end;

activity init =
[
self := Self();
ts_init (Parent) ;
myworld := GetWorld()
1;
end;
activity sample =
[
adc :=
GetMatrixI (myworld->myworld->Sensors,
Pos.Y-1,Pos.X-1);
out?2 (ADC, adc) ;
sampled := sampled + 1
1;
end;
activity sleep =
[
AwaitDelay (10.0)
1;

end;

transition
transition
transition
transition

entry,init) ;

init, sample) ;

sample, sleep) ;

sleep, sample,blocked=false) ;

~ o~ o~ —~

SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE SEM-17

SEM PROGRAMMING LANGUAGE VERSION

end;

VERSION

1.2

m Last modified: April 8, 2014

m SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

	Synopsys
	Description
	Agents
	Defintions
	Data Types
	Values
	Expressions
	Paths
	Lists, Iterators, Arrays
	Sequential Composition
	Branches
	Loops
	Shapes
	Examples
	Version

