
Smart Micro-scale Energy Management and
Energy Distribution

In Decentralized Self-Powered Networks Using
Multi-Agent Systems

Stefan Bosse
University of Koblenz-Landau, Fac. Computer Science, Germany

10.9.2018
sbosse@uni-bremen.de

1. Inhalt

1. Inhalt 2
2. Introduction 2

2.1. Motivation and State of the Art 3
3. Reference Architecture 4

3.1. Network Level . 4
3.2. Node Level . 5
3.3. Communication Level . 6
3.4. Technological Architecture . 6

4. Energy Model 7
4.1. Energy Transfer . 7
4.2. Energy Supply Topologies . 8
4.3. System Energy . 9

5. Energy Management and Distribution 9
5.1. Node Classification . 9
5.2. Example of Energy Distribution 10

6. Multi-Agent System 10
6.1. Divide-and-Conquer . 11
6.2. Energy Transport by Agents . 11
6.3. Agent Behaviour and Classes . 12
6.4. Negotiation & Marking . 12
6.5. Parameter Set . 13
6.6. Algorithm . 13

7. Agent Platform(s) 14
7.1. Overview . 15

1

7.2. JAM . 16
7.3. LUAM . 18
7.4. AFVM . 20

8. Simulation and Evaluation 21
8.1. SEJAM2 . 22
8.2. Live . 23
8.3. Request Behaviour . 24
8.4. Help Behaviour . 24
8.5. Help-on-way Behaviour . 25
8.6. Event-based Behaviour . 26

9. Conclusion 26

2. Introduction

Goal?
Self-organizing energy management and distribution in autonomous
and self-powered Sensor Networks, the IoT, and Smart Energy Grids

Methodology?
Mobile Multi-agent Systems that are capable to transfer (virtually
carry) energy between networks nodes with Divide-and-Conquer ap-
proach

Technology?
Sensor and computer nodes connected by shared data-energy links (i.e.,
transferring data and energy over a wired or wireless link)

Investigation?
Global emergence behaviour of self-organizing energy management agents

Evaluation?
Simulation of a mesh-grid Sensor Network using the SEJAM2 simulator

2.1. Motivation and State of the Art

Smart Energy Management

ä Tight coupling of Communication and Power Control

Stefan Bosse

Smart Sensor Networks

ä Autonomous sensor nodes, self-powered, mobile, ad-hoc IoT connected

Stefan Bosse

3. Reference Architecture

3.1. Network Level

ä This work made no technology or architectural specific assumptions.

Definition 1. (Network)
A network W is a graph G (N,C) consisting of autonomous nodes ni ∈ N and
edges ci ∈ C connecting nodes (communication channels).

ä Simplification: Although arbitrary network topologies are supported, this
works assumes three-dimensional mesh-grid networks

o The network can be irregular (missing nodes) and incomplete (miss-
ing links) → Unicast Peer-to-Peer links

ä Each node can be connected with up to six neighbouring nodes:

Stefan Bosse

Fig. 1. Three-dimensional mesh grid network

3.2. Node Level

ä Each node is some kind of computer (at least a microcontroller) that
performs:

o Data Processing

o Sensor Processing

o Energy Management

ä Each node provides the following modules and components:

o Data Processor P

o Communication C

o Set of sensors (Power, Voltage, Light, ..) S and Signal Processor SP

o Energy Storage ES

o Energy Harvesting EH

o Energy Transformer (Sender & Receiver) ET

o Agent Processing Platform APP

o A common data base (tuple space) used for agent interaction

Stefan Bosse

3.3. Communication Level

Channels. Nodes can exchange data with their neighbours by using some kind
of serial communication links.

ä A communication link can be used for the:

1. Transfer of data and messages;

2. Transfer of energy.

ä There are different kinds of physical transmission technologies differing
in data bandwidth B, latency τ , and energy capability and transmission
efficiency ϵ:

o Electrical → high efficiency ϵ1;

o Optical → efficiency ϵ2 < ϵ1; and

o Radio-wave based → ϵ3 < ϵ2 < ϵ1.

Issue: Each time a network node transfers energy along a path (na,nb) the total
transferred energy decreases exponentially (Π ϵ)

3.4. Technological Architecture

Fig. 2. Network topology (left) composed of nodes with sender and receiver
blocks (right) used for data and energy transmission between neighbouring node.

Stefan Bosse

4. Energy Model

..

The system energy model is introduced for a common understanding and
is not used by the agents!

4.1. Energy Transfer

ä Nodes can interchange energy via messages.

o The data processing system can use the communication unit to trans-
fer data (D) and superposed energy (E).

ä Each message sent from node A to node B is an energy transfer Emsg

consisting of tokens (bits)

ä Sender unit can mix additional energy tokens with message data D (N
serial bits) resulting in increased transmitted energy:

Emsg = NIDτ1 + IT τ2 , with IT ≫ ID

ä Receiver unit stores received energy Emsg ϵin extracted from each message
in local energy storage.

4.2. Energy Supply Topologies

A. Star, Centralized → External Supply

ä Each network node is connected point-to-point with an energy source.

ä Low loss of energy, but not suitable for extended/large networks.

B. Grid, Centralized → External Supply

ä Each node is supplied with energy from neighbouring nodes.

ä There is one or there are few external supply point(s).

ä High loss of energy: energy is passed along several nodes (total eff. Ω)
from source to destination points:

Ω =
∏

∀i∈{PATH}

εi

Stefan Bosse

C. Grid, Decentralized → Self-powered

ä Each node is supplied by local energy source, and

ä additionally? by neighbouring nodes.

Fig. 3. Different energy supply approaches and efficiency

4.3. System Energy

Enode(t) = e0 (t0)−
∑

kdecay (t)
−
∑

kcompτ(Aci)
−
∑

kcreateAgi (AC)
−
∑

kcommkl inkσ(msgi)
+
∑

lconv ll inkei ,deliver +
∑

lconvhai
Enet(t) =

∑
Enode,i (t)

ä e0 : initial node energy (deposit)

ä kdecay : time-dependent energy decay parameter (energy losses in storage)

ä τ(Aci): energy reduction by agent activity Aci

ä σ(msg): size of a communication message

ä kcomm, kl ink , kcomp, kcreate : energy consumption parameters for communi-
cation and computation

ä lconv , ll ink : energy conversion parameters (efficiency)

Stefan Bosse

ä ei , hai : energy delivery and harvesting

5. Energy Management and Distribution

5.1. Node Classification

Very bad node → E < EAlarm

A node with very low energy, with restricted node operation (only agents
arriving with energy are processed, only help emergency agents are sent out).

Bad node → EAlarm < E < EThres1

A node with low energy, resulting in a basically normal node operation
but with execution limits (number of agents, agent processing time, agent
creation, agent migration, agent class restrictions, increased barriers of pro-
cessing negotiation).

Good node → EThres1 < E < EThres2

A node with normal energy deposit and a normal node operation state with
some resource limitations. All agents are processed and the node agent can
create any type of energy agents.

Very good node E > EThres2,
A node with very high energy and normal node operation; only a few or no
resource limitations. All agents are processed and the node agent will only
create distribute energy agents (if behaviour was enabled).

5.2. Example of Energy Distribution

ä Two-dimensional mesh grid

ä Energy distribution between nodes under the control of mobile agents
performing negotiation with node agents

ä Goal: Decrease number of bad and very bad (non-operational) nodes

Stefan Bosse

Fig. 4. Left: Energy distribution population map without SEM, Right: with
SEM (after 10000 simulation steps)

6. Multi-Agent System

..

Agents interact with each other by exchanging data base tuples or by
creating agents

6.1. Divide-and-Conquer

ä There is no centralized instance monitoring energy and performing en-
ergy management (distribution)

ä Each network node performs energy management (EM) within a spatially
limited region → multiple instances

ä Global EM goals:

o Stability of system operation

o No bad nodes

o High availability

ä Emergence behaviour: Efficient and equalized energy distribution

ä Basic principles to achieve decentralized local EM with a global emer-
gence:

o Negotiation, Diffusion, Replication, and Inihibition

o Self-organization

Stefan Bosse

o Self-connectivity

o Self-adaptation

o Self-healing

6.2. Energy Transport by Agents

ä Each time an agent that carry energy tokens arrives at a new node, the en-
ergy is stored in the node deposit and a virtual energy tuple is produced
in the tuple space.

ä If the agent continues traveling it has to consume the energy token again
removing energy from the deposit (on sending).

Fig. 5. Agent interaction with tuple spaces exchanging virtual energy tokens
via tuples

6.3. Agent Behaviour and Classes

Node → Stationary Agent
This agent monitors the node state and power history. It has to initiate ap-
propriate actions, i.e., creation of energy request, help, or distribute agents.
The node agents has to asses the quality of the SEM locally and can change
SEM strategies.

Request → Mobile Point-to-point Agent

Stefan Bosse

This agent requests energy from a specific destination node, returned with a
Reply agent. If the destination node cannot deliver energy (bad node), the
request agent dies without a reply.

Reply → Mobile Point-to-point Agent
This agent is created by a Request agent, which has reached its destination
node. This agent carries energy from one node to another.

Help → Mobile Region Agent → Reactive
This agent explores a path starting with an initial direction and searches a
good node having enough energy to satisfy the energy request from a bad
node. This agent resides on the final good node (found by random walk
within a region) for a couple of times and creates multiple deliver agents
periodically in dependence of the energy state of the current node. If the
current node is not suitable anymore, it travels to another good node.

Deliver → Mobile Path Agent → Reactive
This agent carries energy from a good node to a bad node (response to Help
agent). Depending on selected sub-behaviour (HELPONWAY), this agent
can supply bad nodes first, found on the back path to the original requesting
node.

Distribute → Mobile Region Agent → Pro-active!
This agent carries energy from the source node to the neighbourhood and
is instantiated on a good node. It explores a path starting with an initial
direction and searches a bad nodes to supply them with the energy from the
agent virtual energy deposit.

6.4. Negotiation & Marking

ä To avoid high density of help and request agents on a specific neighbour
node each help and request agent places temporary markings on the
node indicating energy demand on this (good or very good) node (aka.
synthetic pheromones) by other nodes.

ä These markings are placed in the tuple space of the node and removed
after a time-out automatically.

ä If a new help or request agent arrives on a node and this node has a strong
marking it will continue traveling (help behaviour) or dies (request
behaviour).

ä Each help and request agent negotiates energy demand with the node
agent via the tuple space.

Stefan Bosse

6.5. Parameter Set

ä Behaviour of energy agent is parameterized:

parameter : {
energy1 : 50 , energy2 : 300 , // operational energy range
energyAlarm : 50 , // e < energyAlarm : very bad Node
energyThres0 : 100 , // e < energyThres0 : bad node
energyThres1 : 200 , // e > energyThre1

: very good Node
energyDeposit : 50 , // reservoir
energyRequest : 50 , // def . energy to be requested
energyDistribute : 20 , // def . energy to be distributed
explorationRange : 4 ,
Lifemax : 4 , Hopsmax : 8 ,
inhibitTime : 20 , // inhibit request/help agents
energyK : 0 .95 , // energy conversing efficiency
energyCommK : 0 .8 , // energy transfer efficiency
sem : [′help′], // energy management strategy
}

6.6. Algorithm

Algorithm 1. (Energy Management)

agent energy (parameter) =

if energynode < energyThres0 then
A : choose neighbour node randomly goto node and request energy token

if neighbour node cannot deliver energy then
choose next node randomly by directed diffusion
repeat (A) until a region boundary is reached , or

a good or very good node was found .
else

B : send and deliver energy tokens repeatedly back to source node
sleep ; repeat (B) until this node lack of energy or endof life

end
elseif energynode > energyThres1 then

C : send and deliver energy tokens to randomly chosen neighboring nodes within a region
sleep ; repeat (C) until energynode < energyThres1 or endof life

end

if helponway then charge each bad node along path end
end

Stefan Bosse

Utility Function

ä A utility function evaluates the effect of actions of an agent or a set of
agents performed in the past on the environment and with respect to the
goals of the MAS

ä The utility function u(run) ∈ [0,1] used by the energy agents evaluates
the efficiency of the energy distribution (action sequence run={ai}) and
influence the sub-behaviour selection and parameter settings

u(run) =

∑
edelivered −

∑
econsumed∑

ecollected

7. Agent Platform(s)

..

All Agent Processing Platforms (APP) used in this work base on the
same Activity-based Agent Programming Language Model (AAPL)

AAPL

ä Agent Behaviour: Activity-Transition Graph (ATG)

o ATG can be modified by agents

ä Activities: Set of actions representing sub-goals

ä Actions: Computation, Communication, Replication, Mobility, Reconfig-
uration

ä Communication: Tuple spaces, Signals

7.1. Overview

ä All AAPL-based platforms support mobile agents (representing mobile
processes), agent reconfiguration (core morphing), and networking

Stefan Bosse

Fig. 6. Different agent processing platforms matching different layers: (Hori-
zontal) Implementation (Vertical) Network domain and host platform

7.2. JAM

JAM: JavaScript Agent Machine

ä JAM is implemented entirely in JavaScript

ä Agents are implemented entirely in JavaScript (AgentJS)

ä JAM can be executed on any JS engine (node.js, jxcore, jerryscript, spi-
dermonkey, Browser,..)

Stefan Bosse

ä Tuple space is hierarchically organized (arity → type signature → key
hashtag)

ä Pattern matching of tuples in logn time

ä Agent execution in sandbox environment

ä Security: Different agent roles (privileges); capability protection

Definition 2. (AgentJS Class Template)

Stefan Bosse

function ac (p1 , p2 , ..) {
this.v = ϵ
this.act = {
a1 : function () { .. },
a2 : function () { .. }, ..

}
this.trans = {
a1 : a2 ,
a2 : function () { return ϵ}, ..

}
this.on = { .. }
this.next = a1 ;

}

7.3. LUAM

LUAM: Lua Agent Machine

ä LUAM is implemented entirely in Lua programming language

ä Agents are implemented entirely in Lua (AgentLua)

ä LUAM can be executed on lua (pure byte-code machine) and luajit (hybrid
byte-code and just-in-time native code compilation)

Stefan Bosse

ä Tuple space is hierarchically organized (arity → type signature → key
hashtag)

ä Pattern matching of tuples in logn time

ä Agent execution in sandbox environment

ä Security: Different agent roles (privileges); capability protecttion

Definition 3. (AgentLua Class Template)

Stefan Bosse

ac = class()
function ac : init (p1 , p2 , ..)
self .v = ϵ
self .act = {
a1 = function () .. end ,
a2 = function () .. end , ..

}
self .trans = {
a1 = a2 ,
a2 = function () return ϵend , ..

}
self .on = { .. }
self .next = a1 ;

end

7.4. AFVM

AFVM: Agent FORTH Virtual Machine

ä AFVM is implemented either in Software (C,JS,Java,..) or in Hardware
(FPGA/RTL)

ä AFVM is a multi-stack multi-processor executing FORTH code

ä Agents are implemented entirely in FORTH and organized in code frames
(AgentFORTH)

Stefan Bosse

ä Token-based pipelined Multiprocessing

ä Code frames holding entire agent code and state (data)

ä Agent execution in strict sandbox environment controlled by processor

ä Agent processors share tuple spaces and agent management data base

Definition 4. (AgentFORTH Code Frame Template)

Stefan Bosse

par p1 integer
par p2 integer
..
var v integer
..
: ∗ a1 .. ;
: ∗ a2 .. ;
..
: f .. ;
: %trans
|a1 .. .
|a2 .. .
..

;
trans

8. Simulation and Evaluation

8.1. SEJAM2

SEJAM: Simulation Environment for JAM

ä SEJAM is a MAS simulation environment on top of JAM

ä SEJAM provides a GUI simulation control and a graphical simula-
tion world

ä JAM agents are extended by a visual property

ä Simulations can be modeled with a JSON+ (extended code version) file

ä SEJAM can be connected to real JAM networks (hardware-in-the-loop
simulation)

Stefan Bosse

8.2. Live

ä Network: Three layers of 8x5 network nodes (3D mesh grid)

ä Initial situation: 30% (very) bad nodes

ä Energy agents are distributing energy between nodes

ä Finally no bad nodes remain

Stefan Bosse

8.3. Request Behaviour

ä Reactive request behaviour delivers overall good results

Stefan Bosse

[120 nodes total]

8.4. Help Behaviour

ä Help behaviour delivers overall best results (fast convergence)

[120 nodes total]

Stefan Bosse

8.5. Help-on-way Behaviour

ä Help-on-way behaviour can create very bad nodes (non-operational)

[120 nodes total]

8.6. Event-based Behaviour

The entire MAS is self-organized and self-managing based on:

ä energy perception,

ä reactivity → event-based,

ä inhibition,

ä replication,

ä diffusion, and

ä negotiation.

Stefan Bosse

9. Conclusion

1. Decentralized goal-driven energy distribution was performed with mobile
Multi-agent Systems

ä Agent are able to carry (virtual) energy tokens

ä Energy can be exchanged between nodes based on agent negotiations

ä Local behaviour ⇒ Global Emergence (E.g., goal to minimize bad
nodes)

2. No particular system, energy, or network models are required → model-
free approach

3. Agents were implemented in this work in JavaScript and executed by the
JavaScript Agent Machine (JAM)

ä JAM can be executed on a wide range of devices and host platforms
(embedded computer .. server)

4. One major field of application (but not limited to): Dynamic Sensor Net-
works with ad-hoc connected and self-powered autonomous nodes

Stefan Bosse

	1. Inhalt
	2. Introduction
	2.1. Motivation and State of the Art
	Smart Energy Management
	Smart Sensor Networks

	3. Reference Architecture
	3.1. Network Level
	3.2. Node Level
	3.3. Communication Level
	3.4. Technological Architecture

	4. Energy Model
	4.1. Energy Transfer
	4.2. Energy Supply Topologies
	4.3. System Energy

	5. Energy Management and Distribution
	5.1. Node Classification
	5.2. Example of Energy Distribution

	6. Multi-Agent System
	6.1. Divide-and-Conquer
	6.2. Energy Transport by Agents
	6.3. Agent Behaviour and Classes
	6.4. Negotiation & Marking
	6.5. Parameter Set
	6.6. Algorithm
	Utility Function

	7. Agent Platform(s)
	AAPL
	7.1. Overview
	7.2. JAM
	7.3. LUAM
	7.4. AFVM

	8. Simulation and Evaluation
	8.1. SEJAM2
	8.2. Live
	8.3. Request Behaviour
	8.4. Help Behaviour
	8.5. Help-on-way Behaviour
	8.6. Event-based Behaviour

	9. Conclusion

