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Abstract: A novel and unified design approach for reliable distributed and parallel data
processing in large scale networks consisting of high- and of low-resource nodes using
mobile agents  is introduced. This approach enables the development of sensor clouds of
the future integrated in daily use computing environments and the Internet. Agents can mi-
grate between different hardware and software platforms  by migrating the program code of
the agent, embedding the state and the data of an agent, too.  Agent mobility crossing dif-
ferent execution platforms, agent interaction by using tuple-space databases, and agent
code reconfiguration enable  the design of reliable distributed sensor processing networks.

1. Introduction
Trends recently emerging in engineering and micro-system applications such as the

development of sensorial materials [1][2] show a growing demand for distributed
autonomous sensor networks of miniaturized low-power smart sensors embedded in
technical structures. Multi-agent systems (MAS) can be used for a decentralized and
self-organizing approach of data processing in a distributed system like a resource-
constrained sensor network (discussed in [4] and [5]), enabling smart and adaptive
distributed information extraction, for example, based on pattern recognition (e.g.,
referring [6] and [7]),  by decomposing complex tasks in simpler cooperative agents. It
can be shown that MAS-based data processing approaches are scalable from generic
computer  to single microchip level platforms which can aid the material-integration of
Structure Monitoring applications. Currently there are only few proposed agent pro-
cessing platforms which can be scaled to microchip level.

In [4] the agent-based architecture considers sensors as devices used by an upper
layer of controller agents. Agents are organized according to roles related to the differ-
ent aspects to integrate, mainly sensor management, communication and data
processing. This organization isolates largely and decouples the data management
from changing networks, while encouraging reuse of solutions. 

The deployment of agents can overcome interface barriers and closes the gap aris-
ing between platforms and environments differing considerably in computational and
communication capabilities, enabling the integration of sensor networks in large-scale
world-wide-web (WWW) applications and providing Internet connectivity, shown in
Fig. 1. This is addressed by using a unified agent-based programming and interaction
model, independent of the underlying processing platform. For the proposed
advanced agent processing platform architecture there exist suitable hardware, soft-
ware, and simulation model implementations, which can be interconnected in
networks. They are compatible on the operational and execution level, thus, agents
can migrate between these different implementation platforms.
Agent mobility crossing different execution platforms and agent interaction by using
tuple-space databases and global signal propagation aid solving data distribution and
synchronization issues in the design of distributed sensor networks.
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Usually sensor processing and information computation require known world mod-
els including mechanical models, for example, in load monitoring use cases of
technical structures. Self-organizing MAS are useful in unreliable and partially
unknown environments, which can overcome world environment and mechanical
model limitations successfully.

Adaptation of the agent behaviour, i.e., based on learning, offers a reliable reaction
mechanism in the presence of environmental changes, e.g., changes in network con-
nectivity or node failures. Mobility - the ability to migrate a agent processing unit to a
different execution platform and node - and autonomy together with a high degree of
independency from the processing platform ensure robust data processing in large-
scale networks.

Figure 1. Deployment of Agents in Sensor Clouds and Internet Applications

Traditional LM/SHM/TS algorithms like inverse numerical approaches, supervised
machine learning, correlation analysis, and pattern recognition, are characterized by a
high computational complexity and  high memory requirements. Usually these high-
level computations are performed off-line (outside the network and not in real-time). It
can be shown that agent-based computing can be used to partition these computa-
tions in off-line and on-line (in network and real-time) parts resulting in an increased
overall system efficiency (performance and energy demands) and a unified program-
ming interface between off- and on-line parts.  The agent model is also capable and
used to provide a programming model for distributed heterogeneous systems crossing
different network domains. Multi-agent systems are used to enable a paradigm shift
from traditional continuos data-stream based to event-driven sensor data processing,
resulting in increased robustness, performance, and efficiency. Event-based sensor
data processing and self-organizing systems reduces the communication and pro-
cessing complexity significantly without a loss of Quality-of-Service (QoS). 

Autonomy-orientated computation, respectively self-organizing MAS with directed
diffusion, replication, exploration, and voting behaviour are used to implement model
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free sensor-to-information mapping, suitable for information extraction in sensor net-
works and LM/SHM/TS applications based on pattern recognition and data-centric
algorithms. Smart learning agents based on decision trees are used to distribute and
deliver information in unreliable and changing sensor networks. The run-time behav-
iour and the requirements of computational, communication, and energy resources of
different MAS are analyzed using simulation and real-time monitoring techniques in a
technical demonstrator.

A case study using self-organizing MAS and event-based sensor data distribution
demonstrated the suitability and impressive efficiency of MAS and the advanced
agent processing platform for a Structural Health Monitoring use case, which con-
nects low-resource large-scale sensor networks, consisting of hundreds of nodes,
with distributed computers solving inverse numeric computations (details in [3]). 

2. Mobile Multi-Agent Systems
The deployment and programming of MAS means programming of distributed sys-

tems. The programming of distributed system is a combination of computation and
coordination. In this work, the agent behaviour, perception, reasoning, and the action
on the environment are encapsulated in agent classes, with activities representing the
control state of  the agent reasoning engine, and conditional transitions connecting
and enabling activities. Activities provide a procedural agent processing by a sequen-
tial execution of imperative data processing and control statements. Agents can be
instantiated from a specific class at run-time. Activities are connected by transitions,
the edges of an Activity-Transition Graph (ATG), shown in Fig. 2.

Figure 2. Agent behaviour programming level with activities and transitions (AAPL, left,
details in [1][2]); agent class model and activity-transition graphs (top); agent instantiation,
processing, and agent interaction on the network node level (middle), agent deployment in
heterogeneous network (right)
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There is a Multi-Agent system (MAS) deployed in heterogeneous networks consist-
ing of a set of individual agents {a1,a2,..}. There is a set of different agent behaviour,
called classes C={AC1, AC2,..}. An agent belongs to one class. In a specific situation
an agent ai is bound to and processed on a network node Nm,n,o,.. (e.g. a microchip, a
computer, or a virtual simulation node) at a unique spatial location given by the vector
(m,n,o,..). There is a set of different nodes N={N1, N2,..} arranged in a mesh-like net-
work with peer-to-peer neighbour connectivity (e.g., a two-dimensional grid). Each
node is capable of processing a number of agents ni(ACi) belonging to one agent
behaviour class ACi, and supporting at least a subset of C’ ⊆ C.  An agent (or at least
its state) can migrate to a neighbour node where it continues working. Each agent
class is specified by the tuple AC = 〈A,T,V,F,S,H〉. A is the set of activities (graph
nodes), T is a set of transitions connecting activities (relations, graph edges), F is a
set of computational functions, S is a set of signals, H is a set of signal handlers, and
V is a set of body variables used by agents of the agent class.

This agent model is generic and not limited to traditional program orientated sys-
tems. For instance, a node of a network can be represented by a stationary agent,
too. This node agent offers node services used by other (mobile) agents, usually part
of an operating system. 

An ATG describes the complete agent behaviour. Any sub-graph and part of the
ATG can be assigned to a sub-class behaviour of an agent. Therefore modifying the
set of activities A and transitions T of the original ATG introduces several sub-behav-
iours implementing algorithms to satisfy a diversity of different goals. The
reconfiguration of activities A’={A1 ⊆ A, A2 ⊆ A, ..} from the original set A and the
modification or reconfiguration of transitions T’={T1,T2,..} enables dynamic ATGs and
agent sub-classing at run-time (DATG).

There is an ATG-based Agent Programming Language AAPL which can be synthe-
sized to different agent implementation and processing models (details in [1][2]). The
activity-graph based agent model is attractive due to the proximity to the finite-state
machine model, which simplifies the hardware implementation. An activity is started
by a transition depending on the evaluation of (private) agent data (conditional transi-
tion) related to a part of the agents belief in terms of the Belief-Desire-Intention (BDI)
architecture, or started by unconditional transitions (providing sequential composi-
tion). The Agent Behaviour model is specified in Def. 1.
Def. 1. Multi-Agent Behaviour Model and Multi-Agent Processing

Communication and Interaction of Agents. Agents can interact with each other by exchanging data
using a tuple-space (TS) database as a shared object supporting synchronized and atomic read, test,
remove, and write operations. Agents can communicate and synchronize peer-to-peer by using signals,
which can be delivered to remote execution nodes, too.

A tuple space is basically a shared memory database used for synchronized data exchange among
a collection of individual agents, which is a well known and suitable MAS interaction paradigm. The
scope and visibility of a tuple space database can be unlimited and distributed in the whole network, or
limited to a local scope, e.g., the network node level. A tuple space provides abstraction from the
underlying platform architecture, and offers a high degree of platform independence, vital in a heteroge-
neous network environment.

A tuple database stores a set of n-ary data tuples, tpn=(v1, v2,.., vn), a  n-dimensional value tuple.
The tuple space is organized and partitioned in  sets of n-ary tuple sets ∇={TS1,TS2,..,TSn}. A tuple is
identified by its dimension and the data type signature. Commonly the first data element of a tuple is
treated as a key. Agents can add new tuples (output operation) and read or remove tuples (input oper-
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ations) based on tuple pattern and pattern matching, patn=(v1, x2?, .., vj,.., xj?,., vn), a n-dimensional
tuple with actual and formal parameters. Formal parameters are wildcard placeholders, which are
replaced with values from a matching tuple. The input operations can suspend the agent processing if
there is actually no matching tuple is available. After a matching tuple was stored, blocked agents are
resumed and can continue processing. Tuple databases provide inter-agent synchronization, too. This
tuple-space approach can be used to build distributed data structures and the atomicity of tuple opera-
tions provides data structure locking. The tuple spaces represent the knowledge of agents.
Agent Processing and Agent Processing Platforms (APP). Agents are computational entities with a
high degree of autonomy and independence from the underlying processing platform. In this work, the
agents are implemented with Agent FORTH program code that is executed on virtual stack machines,
which can be implemented alternatively on hardware (System-on-Chip), simulation, and software level,
which can be embedded in microcontroller, desktop applications, web applications, or server programs.
The agent program code is a self-containing and self-initializing unit embedding the (private) agent data
and the current control state of the agent, which simplifies migration significantly. The program is able
to modify itself by using code morphing. This approach leads to a low computational dependency from
the current execution environment, which is vital to strong heterogeneous environments. There is only
a small set of  knowledge about the program which is required by the VM to execute the agent program,
and vice versa.

3. The Big Thing: Domains, Networks, and Mobile Agent Processing
The previous section introduced a unified agent behaviour and programming model

offering computation, instantiation of agents, mobility, and multi-agent interaction, and
which can be implemented on a diversity of processing platforms. One major goal of
the deployment of MAS is overcoming heterogeneous platform and network barriers
arising in large scale hierarchical and nested network structures, consisting and con-
necting, e.g., the Internet, sensor networks, body networks, production and
manufacturing Cyber-Physical System (CPS) networks, shown in Fig. 3 on the left.
The large diversity of execution platforms, network topologies, services provided by
network nodes, and the programming environments require a unified and abstract
behavioural and structural representation model. The Bigraphical model proposed by
Robin Milner models the entire "computing" environment with place and link graphs,
composing finally bigraphs [8], shown on the right of Fig. 3. They include agents, and
they are offering a unified model and platform for ubiquitous systems and the founda-
tion for an Ubiquitous Abstract Machine, and supporting reconfigurable spaces
(dynamic topologies). Bigraphs virtualize communicating  processes  (agents) and
information  objects (tuple-spaces),  and they  originate  in  process  calculi  for  con-
current  systems, especially the pi-calculus [9] and the calculus of mobile ambients
[10] for modeling spatial configurations of networks  with  a  dynamic  topology.

The environment consists of places where computation occurs, e.g., computers,
agents, rooms, buildings, machines, and so on. The links are abstract, providing the
possibility of interaction between different places, i.e., transferring of agents and their
mobile processes. Agents are treated as active computational units. Places introduce
spatial and logical bindings. Bigraphs allow the nesting of nodes and places, natural
for many real-world computing environments, and they can be applied for wide reac-
tive systems. All nodes have a fixed number of ports, providing an endpoint for links.
Agents have two ports: a processing port link and an interaction (communication) link.
Bigraphs, which represents the system state, can be modified by the application of
reaction rules, which changes the linking and place relations. Bigraphs can be com-
posed of other bigraphs matching inner and outer interfaces.
sse - 5 - 2015



ISBN: 978-3-86359-296-7 Proc. of the SSI Conf. 2015

Stefan Bo
A link is a hyperedge connection which connects nodes, outer, and inner names,
where names are open linkings that support additional connectivity, i.e., used for the
dynamic composition of bigraphs at "run-time". Connectivity not only provides the plat-
form for agent migration between different places, it provides information exchange,
which is provided here by place-bounded tuple-spaces and signals. Migration of
mobile processes is just another form of interaction with and the modification of the
environment.

To adapt this Bigraphical Reactive System (BRS) model to MAS it is necessary to
distinguish subjects (entities which can perform actions, the agents) and objects (here
data, tuples, tuple-spaces, signals, and processing platforms themselves).

Figure 3. From physical maps (left) to unified logical maps: link (right, bottom) and struc-
ture place (middle, bottom) graphs composing bigraphs (right, top) [S: Sensor, T:
Technical Structure, M: Mobile Device, N: Net. Router, B: Building, R: Room, C: Com-
puter, A: Agent]

4. Robust Event-based Sensor Data Processing
Assume a distributed sensor network, e.g., equipped with strain-gauge sensors

used for load monitoring of technical structures. Traditional sensor data acquisition
read every sensor periodically, independent of a change of the sensor value, which
leads to high communication load and worse scaling in large networks. Instead, a dif-
ferent sensor data processing and distribution approach is used and implemented
with autonomous agents, leading to a significant decrease of network processing and
communication activity and a significant increase of reliability and the Quality-of-
Service:

1. An event-based sensor distribution behaviour is used to deliver sensor information
from source sensor to computation nodes based on sensor region changes.

2. Adaptive path finding (routing) supports agent migration in unreliable networks with
missing links or nodes by using a hybrid approach of random and attractive walk
behaviour.
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3. Self-organizing agent systems with exploration, distribution, replication, and interval
voting behaviour based on feature marking are used to identify a region of interest
(ROI, a collection of stimulated sensors) and to distinguish sensor failures (noise) from
correlated sensor activity within this ROI.

It is assumed that sensor nodes arranged in a two-dimensional grid network (as
shown in Fig. 4) providing spatially resolved and distributed sensing information of the
surrounding technical structure. The computational nodes arranged at the outside of
the network are further divided in pre-computation and the final computation nodes
(the four nodes located at the corners of the network). The pre-computational nodes
can be embedded PCs or single micro-chips, and the computational nodes can be
workstations or servers physically displaced from the material-embedded sensor net-
work. Only the inner sensor nodes are micro-chip platforms embedded in the technical
structure material, for example, using thinned silicon technologies.

The computation of the system response information requires basically the com-
plete sensor signal matrix S. In this approach presented here the elements of the
sensor matrix are only updated if a significant change of specific sensors occurred.
Only the four computational nodes at the corners store the complete sensor matrix
and perform the load computations (e.g., using inverse numeric or supervised
machine learning). The sensor processing uses both stationary (non-mobile) and
mobile agents carrying data, illustrated in Fig. 4 on the left side. There are two differ-
ent stationary (non-mobile) agents operating on each sensor node: the sampling
agent which collects sensor data, and the sensing agent, which pre-processes and
interprets the acquired sensor data. If the sensing agent detects a relevant change in
the sensor data, it sent out four mobile event agents, each in another direction. The
event agent carries the sensor data and delivers it to the pre-computation nodes at the
boundary of the sensor network. The Agent behaviour are specified in Def. 2.

Figure 4. A sensor network deployed with explorer (X), event deliver (E), node (N), and
computational processing agents (P).  The sensor network can contain missing or broken
links between neighbour nodes.
sse - 7 - 2015
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Def. 2. MAS Agent Behaviours for event-based sensor data processing

Event Agents. An event agent has a pre-defined path in the direction dir which is followed by the move
activity as long as there is connectivity to the next neighbour node in this direction. Normally the agent
travels to the outside of the network in the given direction by applying a normal routing strategy suc-
cessfully (goal: minimizing the distance). If it is not possible to migrate in the pre-defined direction, an
alternative path is chosen by using an opposite routing strategy, which chooses a path away from the
original destination (random walk) to bypass not connected nodes and missing communication links.
Using a relax routing strategy the agent is directed again to the original planned path. Making routing
decisions and migration are performed in a move activity of the agent, followed by a check activity
which collects sensor data from the current node and checks the destination node goal, and if reached
delivering the sensor values in a deliver activity.

Each pre-computation node stores a row or a column of the sensor matrix S. If their data changes,
the pre-computation nodes will send out two mobile distribution agents in opposite directions, delivering
a row or column of S to the final computation nodes, located at the edges of the sensor network. 

This approach offers robustness in the case of link or node failures by smart and autonomous path
finding and redundancy. 
Explorer Agents. The goal of the explorer agents is finding the outline of extended correlated regions
(ROI) of increased sensor stimuli which can be distinguished from the neighbourhood. The output is
used to trigger the event agents. Furthermore, faulty or noisy sensors which can disturb the further data
processing algorithms significantly should not delivered to the computational nodes.

An initial root explorer agent  is instantiated by the sensing agent with an initial direction argument
ORIGIN. This explorer agent will read the local sensor values from the tuple database. The root agent
will send out explorer child agents to all connected neighbour nodes. These child agents compute a
partial term of the local stimuli H calculation by sending out additional explorer child agents until the
boundary of the ROI is reached. To avoid multiple visiting of a node by different child agents of the
same exploration group, a marking is set on each visited node (a tuple with a limited lifetime removed
by a garbage collector). If there is already a marking, an explorer child agent will go back immediately
to its parent agent node location and delivers the computed partial term h of H. An explorer or explorer
child agent that sent out additional child agents will wait (sleep) until all child agents have returned their
computation results or a time-out occurs. Data is exchanged between child and parent agents by using
the tuple-space database and synchronization (wake-up) is handled by using signals. 

5. Case Study: A Material-integrated Load Monitoring Network
An example use-case should demonstrate the deployment of the introduced unified

agent model, agent interaction, and mobility of agent processes in an heterogeneous
network environment and technical structures equipped with sensor networks.  Initially
unknown external forces acting on a mechanical structure lead to a deformation of the
material based on the internal forces, shown in Fig. 5. 

A material-integrated active sensor network with strain-gauge sensors, electronics,
data processing, and communication, together with mobile agents is used to monitor
relevant sensor changes with the event-based information delivery behaviour, finally
distributing and pre-computing the sensor data according to the agent behaviour intro-
duced in Sec. 4. The unknown system response for an externally applied load L is
measured by the strain sensor stimuli response S, finally computing an approximation
of the response L’ using inverse numeric methods. 

Inversion problems, in particular those with incomplete and noisy data, are usually
extremely ill-conditioned, meaning that small errors in the signals or the model lead to
huge errors in any solution gained by such a naïve approach. Therefore, inverse
methods try to stabilize the inversion process using regularization techniques (Tik-
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honov, CG), performed off-line (details can be found in [3]) based on prior FEM
simulations of the structure under test finally calculating the inversion matrix, which is
required for the inverse computation of the load matrix from the sensor data matrix. 

The Agent processing Platform nodes introduced in Sec. 2., which are capable of
executing  Agent FORTH machine code programs, are implemented on SoC micro-
chip, in software, and in a simulation environment using the SeSAm Agent-Simulator,
all connected in a multi-domain network, shown in Fig. 5. together with the unified Big-
raph representation. 

Figure 5. Top: A Sensorial Material with a material-embedded sensor network connected
to a computational network, partitioning sensing and computation in on-line and off-line
domains. Agents can migrate between different networks and hosts (sensor nodes, com-
puters, servers, mobile devices). Bottom: Bigraph of the environment [sn/pn: Sensor/
Computational Node, cn: Communication Channel, N: Network, C: Computer, SIM: Agent
Simulator, MAT: Matlab]

6. Conclusion
A novel and unified design approach using mobile agents for reliable distributed and

parallel data processing in large scale networks consisting of high- and of low-
resource nodes can enable the development of sensor clouds of the future integrated
in daily use computing environments and the Internet. Agents can migrate between
different hardware and software platforms (they are compatible on the execution level)
by migrating the program code of the agent, embedding the state and the data of an
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agent, too. The AAPL programming language and Bigraph models are the main tools
for designing large scale and strong heterogeneous networks using MAS.
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