Computing within Materials: Self-Adaptive Materials and Self-organizing Agents From Macroscale to Microscale Computing

Stefan Bosse

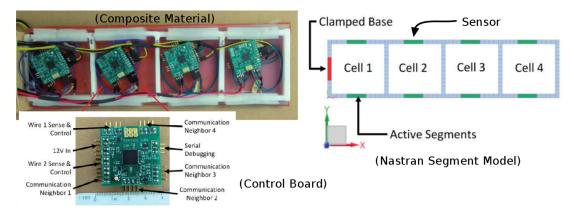
University of Bremen, Dept. Mathematics & Computer Science University of Koblenz, Fac. Computer Science 11.4.2018 sbosse@uni-bremen.de

1. Inhalt

1.	Inhalt	1
2.	Material Informatics: Material-integrated Computing	2
	2.1. Smart Materials	2
	2.2. Material Informatics: Computing within Materials	4
	2.3. Computing Power and Efficiency	4
	2.4. Technologies	5
	2.5. Comparison of Computers	6
3.	Optimization and Adaptation	6
	3.1. Physical Model	7
	3.2. Optimization Goals	7
	3.3. Algorithms	9
4.	Multi-Agent Systems	9
	4.1. Sensor Data Distribution	9
	4.2. Distributed Observable Computation	10
	4.3. Distributed Adaptation	11
5.	Simulation	12
	5.1. Multi-domain Simulation Framework	12
	5.2. Simulation Example	13
	5.3. Simulation Results	14
6.	Conclusions and Outlook	14
7.	References	14

2. Material Informatics: Material-integrated Computing

2.1. Smart Materials

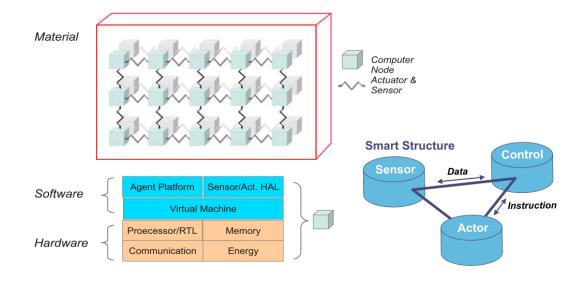

Smart Materials: Fusion of Sensorial- and Adaptive Materials with Information Processing

Sensorial Material

A material or structure with integrated **sensing** and **data processing** (ICT)

Adaptive Material

A material or structure with integrated sensing, data processing and **actuation** that can control and change material or structure **properties**



In our understanding, a smart material provides the following major features:

- 1. **Perception** using various kinds of sensors, e.g., measuring of strain, displacement, temperature, pressure, forces;
- 2. **Changing** of local material and structure properties by actuators, e.g., stiffness or damping variation;

Stefan Bosse

- 3. Integrated Information and Communication Technologies (ICT);
- 4. **Distributed** Approach: Local sensor processing and actuator control Global cooperation and coordination.
- 5. Robustness and Self-Organization

Fig. 1. (Left) General architecture of a Sensorial- and Adaptive Material = Smart Material (Right) Functional Decomposition: Sensing, Acting, Processing \leftrightarrow Data + Instruction Streams

2.2. Material Informatics: Computing within Materials

- ▶ Traditionally computation is separated from sensing and control
- Smart Materials poses the tight coupling of computation, communication, sensing, and control with loosely coupled nano computers
- ► Algorithmic scaling and distribution are required

2.3. Computing Power and Efficiency

➤ A normalized computing efficiency of a computer (considering only the data processing unit) can be defined by

$$\varepsilon = \frac{C}{AP} \tag{1}$$

 \mathbf{A}

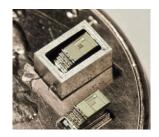
Chip Area in square millimetres

 \mathbf{C}

Computing Power in (Integer) Mega Instructions Per Second (MIPS)

Ρ

Electrical Power in Watt


➤ The computing efficiency can be used to compare different computers and devices, i.e., giving a scaling factor: $s=\epsilon_x/\epsilon_y$

2.4. Technologies

Existing "Nano" Computers

- ▶ Smart Dust \rightarrow Millions of loosely coupled nano computers, e.g.,
 - $\hfill\square$ embedded in materials
 - $\hfill\square$ scattered on surfaces
 - $\hfill \Box$ dispersed in liquids, foils, ..
 - $\hfill\square$ about $10 \mathrm{mm}^3$ volume

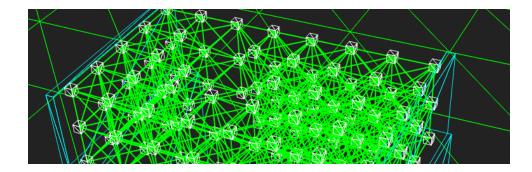
Micro Mote M3

ELM System

	Micro Mote (M3)	ELM System	Atmel Tiny 20	Freescale KL03	ARM Cortex Smart Phone
Processor	Arm Cortex M0	C8051F990 (SL)	AVR	Arm Cotex M0+	Arm Cortex A9
Clock	$740 \mathrm{kHz}$	$32 \mathrm{kHz}$	-	48MHz	1GHz
CPU Chip Area	$\frac{\text{max.}}{0.1\text{mm}^2}$	$9 \mathrm{mm}^2$	$1 \mathrm{mm}^2$	$4 \mathrm{mm}^2$	$7 \mathrm{mm}^2/\mathrm{ROM}$
Sensors	Temperatu	re	-	-	Temp, Light, Sound, Accel., Press., Magn.
Communication	900MHz radio, optical	optical	electrical	-	3G/4G, WLAN, USB, Blue- tooth, NFC
Harvester, Battery	Solar cell, Thin film	Solar cell, Coin	-	-	-
Power Consumption	70mW / CPU	$\begin{array}{c} 160 \mathrm{mW} \ / \\ \mathrm{CPU} \end{array}$	$20 \mathrm{mW}$	3mW @ 48MHz	100mW avg.,
Manufacturing	180nm CMOS	-	-	-	40nm CMOS
Package	Wire bonded	Silicon Stack	PCB	Single Chip	Single Chip
Computing Eff. ϵ	150	0.02	0.6	4.0	0.53

2.5. Comparison of Computers

3. Optimization and Adaptation


3.1. Physical Model

- ▶ A component composed of a Smart Material consists of:
 - □ Mass (body) nodes or material regions
 - \square Interconnection elements with parameterizable properties

Multi-body Physics Model

Solid body mass nodes with springs connecting nodes:

- ➤ A spring is an actuator with two optimization target variables: Stiffness s, Damping d
- \blacktriangleright Each spring is a strain sensor delivering the sensor value σ for the computation of the observation variable

3.2. Optimization Goals

Reduction of global and local stress, strain, or forces of arbitrariely shaped components under varying load situations

Control and Optimization Cycle

- 1. Perception using sensors
- 2. Comparison of local and global observation variables
- 3. Modification of material parameters by actuators

3.3. Algorithms

Global

- \blacktriangleright A global observation variable x is used to compute a correction of the target variable s
- \blacktriangleright The correction function $k_{\rm x}$ uses the ratio of the local and the global observable

```
do with x \in \{\epsilon, \sigma, U\}

X:=0; \forall n \in \mathbb{N} \text{ do } X := X + x_n

X := X/|\mathbb{N}|

\forall n \in \mathbb{N} \text{ do}

r_n := k_x(x_n/X, s_n)

s_n := s_n * r_n

until |Err| < ErrO
```

Segment

- ▶ Network is partitioned in segments
- ▶ Observation variable is computed for each segment
- \blacktriangleright Target variable is computed for each segment

```
do with x \in \{\epsilon, \sigma, U\}

\forall Si \in \mathbb{S} do

X_{s,i} := 0;

\forall n \in Si do X_{s,i} := X_{s,i} + x_n

X_{s,i} := X_{s,i} / |S_i|

\forall n \in S_i do

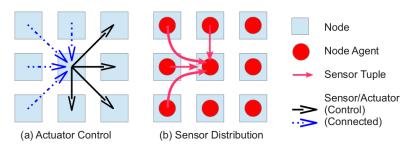
r_n := k_x (x_n / X_{s,i}, s_n)

s_n := s_n * r_n

until |Err| < Err0
```

Neighbour

- ► Neighbour node negotiation
- ► Observation variable is limited to node boundary


► Swapping of increments of target variable

```
\begin{array}{l} \text{do with } \mathbf{x} \in \{\epsilon,\sigma,\mathsf{U}\} \\ \forall \{\mathbf{n}_i,\mathbf{n}_j \in \mathbb{N} \ | \ i \neq j \ \land \\ | \operatorname{pos}\left(\mathbf{n}_i\right) - \operatorname{pos}\left(\mathbf{n}_j\right) | = 1 \} \ \text{do} \\ \text{if } \mathbf{x}_i / \mathbf{x}_j < 1 \ \land \\ \mathbf{s}_i - \Delta \mathbf{s} > \mathbf{s}_0 \ \land \\ \mathbf{s}_j + \Delta \mathbf{s} < \mathbf{s}_1 \ \text{then} \\ \mathbf{s}_i \ := \ \mathbf{s}_i \ - \ \Delta \mathbf{s} \\ \mathbf{s}_j \ := \ \mathbf{s}_j \ + \ \Delta \mathbf{s} \\ \text{end if} \\ \text{always} \end{array}
```

4. Multi-Agent Systems

4.1. Sensor Data Distribution

- Each node agent sends its sensor values to neighbour nodes within a range of radius 1
- ➤ This completes the set of sensor each node requires
- Remote signals are used for sensor distribution using &Delta-distance routing

Fig. 2. Sensor Distribution by neighbour nodes using using remote signals (or tuples)

4.2. Distributed Observable Computation

- ► Global observable computation in a large-scale distributed network is expensive and difficult (failures)
 - □ Random walk and directed diffusion can be used to **approximate** a global observable
- ► Segmented approach requires network segmentation
 - □ Without central instance difficult;
 - \Box Instead a floating segment window is placed around **each** node
 - □ Each node has observable from all direct neighbours (North, South, West, East, Up, Down)
 - $\square A chained distribution of data is used in each segment (N nodes \leftrightarrow N segments!)$
 - \Box Observable values with distance r=1 and r=2 are collected by each node to compute region observable

Distance r=1

Observable from direct neighbours

Distance r=2

Direct neighbours deliver also values form their neighbours (opposite to request direction)

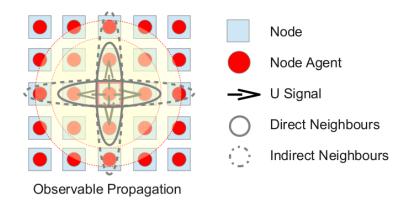


Fig. 3. Distribution of neighbour observable values for region accumulation using remote signals (or tuples)

4.3. Distributed Adaptation

- ▶ The global and the segment algorithm need no further distribute coordination
- ➤ After the region observable (global or segment) is computed the actuators (springs) of each node can be modified basing on ratio of the local and the region observable value
- ▶ Neighbour negotiation approach do not require a region observable

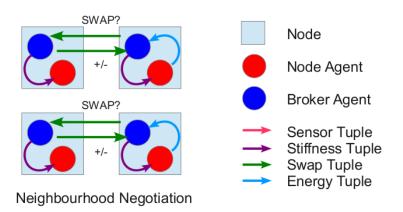
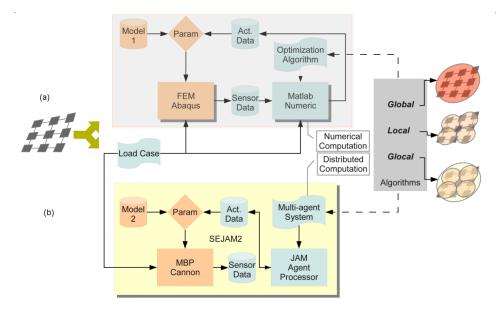
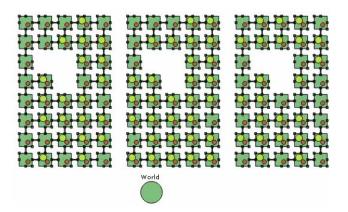



Fig. 4. Negotiation is used between two neighbour nodes to achieve a stiffness reconfiguration

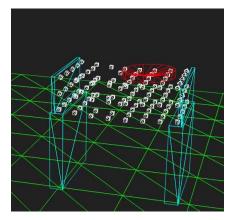
5. Simulation

5.1. Multi-domain Simulation Framework

Fig. 5. Hybrid simulation environment with Abaqus, Matlab, and SEJAM2

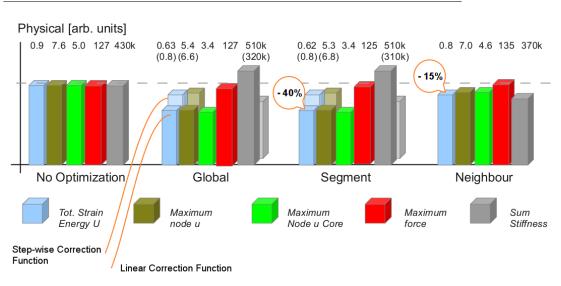

5.2. Simulation Example

▶ Device under Test: Plate (8x5x3 nodes), large hole, external load


MAS World

 Event-based agent behaviour activates sensor processing, distribution, and adaptation only if something changes

Computing within Materials: Self-Adaptive Materials and Self-organizing Agents



Physical World

5.3. Simulation Results

- ➤ Global and segment optimization achieves 40% decrease of total strain and maximum strain energy of mass elements using a linear correction function
- ▶ Neighbour negotiation is simple but not as efficient as segment approach

6. Conclusions and Outlook

- ► Smart Materials poses the **tight coupling** of computation, communication, sensing, and control with **loosely coupled nano computers**
- ► Algorithmic scaling and distribution are required
- ▶ Distributed information processing paradigma: Multi-agent Systems
- ▶ Multi-domain simulation enables the development and evaluation of different optimization strategies for smart adaptive materials and structures
- ▶ The SEJAM simulator enables the simulation and analysis of coupled physical and computational systems
- ▶ Global and segment optimization achieves 40% decrease of total strain and maximum strain energy of mass elements using a linear correction function

7. References

[1] M. A. McEvoy and N. Correll, "Thermoplastic variable stiffness composites with embedded, networked sensing, actuation, and control," Journal of Composite Materials, vol. 49, no. 15, 2015.