
Stefan Bosse - SysInt Conference 2020, Bremen, Germany

Learning Damage Event Discriminator Functions with Distributed Multi-
instance RNN/LSTM Machine Learning - Mastering the Challenge

Stefan Bosse

University of Bremen, Dept. Computer Science, Bremen, Germany

Abstract. Common Structural Health Monitoring systems are used to detect past damages occurred in structures with sen-
sor networks and external sensor data processing. The time of the damage creation event is commonly unknown. Numeri-
cal methods and Machine Learning are used to extract relevant damage information from sensor signals that is character-
ised by a high data volume and dimension. In this work, distributed multi-instance learning applied to raw time-series of
sensor data is deployed to predict the event of the occurrence of a hidden damage in a mechanical structure using typical
vibrations of the structure. The sensor processing and learning is performed locally on sensor node level with a global fu-
sion of prediction results to estimate the damage location and the time of the damage creation. Recurrent neural networks
with a long-short-term memory architecture are considered implementing a damage discriminator function. The sensor
data required for the evaluation of the proposed approach is generated by a multi-body physics simulation approximating
material properties.

Keywords. Distributed Machine Learning; Recurrent Neural Networks, Long-short-term Memory, Distributed Sensor Net-
works; Time-series Forecasting

1. Introduction

Detecting damages and changes in technical struc-
tures and materials affecting the mechanical and
operational capabilities is eminent for the safe de-
ployment of a wide range of machines, devices,
and daily life products under varying environmental
conditions. Damage detection can be performed at
run-time (on-line non-destructive testing), before
the deployment, or at periodic intervals off-line.
There are different damage classes that can be
monitored:

1. Visible damages (with or without in-depth propa-
gation) and damages on the surface (e.g.,
scratches);

2. Hidden damages inside the material without any
visibility outside the material caused by external
forces;

3. Hidden damages inside the material without any
visibility outside the material caused by internal
forces;

4. Altering of materials and material properties
(continuous, inside or on the surface);

The detection of hidden damages is the most
difficult damage class to be handled by automatic
damage detection systems, especially concerning an
unknown response of the measuring system and an-
isotropic material properties. Moreover, impact
events from the environment acting on hybrid ma-
terials and composite structures (e.g., fiber-metal
laminates) typically create hidden damages without
any visibility at the surface, although the damage
was caused by external forces.

There are at least four different levels of informa-
tion that can be delivered by a Structural Health
Monitoring (SHM) systems [1]:

1. Detection of damages and material changes;

2. Localization of damage;

3. Assessment of damages and impact on operation-
al safety;

4. Prediction of mechanical and operation
behaviour.

Damage diagnostic measuring systems commonly
use guided waves (e.g., [2] and [1]) to detect

1

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

changes (e.g., damages like material
inhomogeneity, delaminations of layers,
deformation) of hybrid and composite materials.
Vibration-based diagnostics are frequently used in
SHM systems [3]. There are active and passive
measuring techniques, generating vibrations
actively or using already existing operational
vibrations to detect changes of the structures.

Machine learning approaches are used for the data
analysis in SHM if there is no known or an incom-
plete damage-sensor response function fdamage(s): s
→ d, typically resulting from unknown or only par-
tially known material behaviour models. In [2] and
[1], Artificial Neural Networks (ANN) are deployed
in SHM[4]. They are applied, e.g., to ultrasonic
data measured by an externally applied sensor-
actuator system or by analysing vibration signa-
tures.

In this work, time-resolved data from strain-gauge
sensors applied to the surface of a device under test
(DUT) is used to detect hidden damages at run-
time and on-line using time-series prediction
methods and recurrent ANNs (RNN, sub-class of
generic ANNs with state memory cells). In earlier
work [5], snapshots of data from strain-gauge sen-
sors of a distributed sensor network were used suc-
cessfully to predict hidden damage locations
(discretized) using different ML approaches and a
typical vibration situation of the DUT, even under
distortions. In [5] the distributed multi-instance
learning approach was introduced, but the damages
were static, i.e., they exist already before the typi-
cal vibration and DUT oscillation was measured
and evaluated. In this work, dynamic changes (i.e.,
damage events) of the DUT are investigated in
real-time an on-line, i.e., the damage event occurs
during the measuring. The goal of this work is the
temporal and spatial estimation of a hidden damage
not visible outside by using state-based ANNs ap-
plied to time-series of raw strain-gauge sensor data
and performing a vibration signature analysis. The
ANN should implement a time-dependent discrimi-
nator function that amplifies a damage event and
damps the input signal otherwise. Ideally, the
response output is a squared impulse if a damage

fdam(s, t) =

⎧⎨
⎩

1,

0,

featdam(s, t > t0)∧
t ∈ [t0, t0 +Δt]

otherwise

occurred in the neighbouring of the sensor node:

(1)

A distributed sensor network is assumed consisting
of sensor nodes with two perpendicular orientated
strain-gauge sensors applied to the DUT surface. It
is assumed that a single sensor node can detect a
hidden damage nearby by analysing the time-
resolved sensor data of a typical vibrations of the
structure. But is also assumed that there are multi-
ple nodes able to detect a damage event (location
and time) with a certain probability and that some
nodes may fail to detect the damage event (for any
reason). Distributed sensor fusion is used finally to
get a global damage state information based on ma-
jority voting and mass of centre computation for
the estimation of the location.

The following sections introduce time-series learn-
ing and prediction using recurrent neural networks,
the special features required for learning discrimi-
nator functions, and distributed multi-instance
learning.

Finally, an extensive simulation study is used to
evaluate the proposed approach and poses lessons
learned using state-based ANNs for damage diag-
nostics.

2. Learning of Time Series and
Prediction of Events

In this work time-series forecasting should be
adapted and extended to labelled time-series fore-
casting. Originally, time-series forecasting is used
to predict a variable x(t) at a given sample point t
for future values x(t+1),x(t+2),..,x(t+m). In this
work, time-series sensor data is used to predict an
associated labelled value y(x) correlated with the
sensor input data x(t), x(t-1), .., x(t-n). The associat-
ed value is here a binary indicator for the oc-
currence of an damage event (0/1).

Originally statistical Autoregressive and Moving
Average (ARMA) and integrating (ARIMA) models
were used to predict future evolving of uni- and
multi-variate variables. In the last decades, the de-

2

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

ployment of feed-forward and recurrent artificial
neural networks gain attraction for time-series
forecasting.

2.1 Discriminator Function and
Learning

The main goal of the training of the neural net-
works is synthesis of a discriminator function that
amplifies damage events and damps non-damage
events. I.e., the time-resolved sensor data, i.e., the
time-series S of sensor samples s(t), excitated by an
oscillation of the structure under test (e.g., meas-
ured with strain-gauge sensors) is the input of the
discriminator function, and a damage event estima-
tion value in the range [0,1] is the output consider-

f(S, t, n) = {st, st−1, ..st−n} → [0, 1]

ing the past n samples:

(2)

An example of a damage discriminator function
output is shown in Fig. 1.

2.2 Time-series and Window Slicing

Typically on-line time-series training (and partially
prediction) is performed using window slices of the
signal records fed into the ANN. There are two
classes of windows: 1. Input data windows; 2. Out-
put data windows (used for training only). A mov-
ing window mask function is applied to the input
data, in principle shown in Fig. 1 with two typical
signal records used in this work (strain-gauge sen-
sor signals). Among sharp shaped masks (rectangu-
lar mask window) smooth masks can be applied
(e.g., gaussian or hamming windows with smooth
edge transitions). Although, time-series prediction
using recurrent neural networks is performed com-
monly using input data windows of small width (<
100 samples), the machine models in this work are
trained with large width windows (or applying the
entire time record). In contrast to other state-free
machine learning techniques like decision tree
learner, time-series prediction uses the concept of
state to consider past input data. Therefore, even
with large time records, each sample of a time
record is applied sequentially to the network (com-
parable to a 1-sample window).

Figure 1. Time-resolved sensor input signals (bot-
tom) and output feature (damage event) fragmented
by dynamically moving or static partitioned win-
dows

2.3 Recurrent Neural Networks (Long-
short-term Memory)

In contrast to classical feed-forward ANNs, a re-
current ANN (RNN) contains a feedback of the
output to the input nodes to learn and predict se-
quences of input values. A typical RNN architec-
ture is shown in Fig. 2, basically a NN state-
machine. Although, in principle it can be used to
learn sequences and predict any future development
of a sequence, RNN suffer from two problems dur-
ing training: vanishing gradient and exploding gra-
dient (i.e., error minimisation of network with
respect to training data), which make it unusable.

An improvement over simple RNNs are Long-
short-term Memory RNNs (LSTM) [6] that intro-
duce a more complex memory cell architecture,
shown in Fig. 2. In contrast to LSTM with internal
memory cells, feed-forward networks (FFN) can be
also used for short-memory applications by saving
past data samples externally and passing them to
input nodes of the FFN [7]. A deeper discussion of
the operation of LSTM-RNNs can be found in [6].

3

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

Figure 2. (Top) Recurrent Neural Networks and
LSTM memory cell architecture (Bottom) Traidtion-
al TS forecasting LSTM versa Associated LSTM

In contrast to typical use of LSTM-RNNs predict-
ing future outcome of the input variable x(t+k), in
this work a modified version is used to predict an
associated target variable y(t).

The LSTM-RNN uses a central internal cell state
St, a forget gate F, and an input- and output gate I
and O, respectively (circle nodes). The slanted
nodes are transition functions (e.g., using a sigmoid
function), the cross nodes are multiplier units. The
LSTM can be considered as a sequence of short-
term memories. Layers of the LSTM-RNN that get
a small gradient update stops learning, commonly
the earlier layers, and the LSTM forgets what it has
seen in longer sequences, having a short-term
memory.

Gers & Schmidhuber [8] introduced a variant of
the LSTM (used in this work) providing a "con-
stant error carousels" (CEC) facing training issues
mentioned previously and direct access of the gates
the internal CEC-states.

In the evaluation section it will be shown that
LSTMs are still instable to train and to find an op-
timal hypothesis function for the discrimination
task is a challenge (and an iterative procedure).

The recurrent neural network is typically trained
with ordered batches of training samples at once
(although, the learner internally processes the train-
ing data iteratively and strictly ordered).

2.4 Hypothesis Constraints

To test and evaluate a learned hypothesis function,
the training samples (set of full time records with
all damage cases and all repetition experiments) are
used to calculate a the discriminator coverage by a
mask function.

The hypothesis function represented by the trained
LSTM-ANN must satisfy a set of constraints:

1. The output of the discriminator function (a
trained hypothesis function) must be zero if there
is no damage event

2. The output must switch from 0 to 1 within a
time interval [t0,t1] if a damage event occurred.
The discriminator function may detect further
damage events after the first one.

3. The output may only change if there was a dam-
age within a bounded spatial area around the
sensor position.

4

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

The constraints are scored by a scoring function
described in Sec. 2.5___

2.5 Scoring

Typically training of a machine model incorporates
a training algorithm associated to the specific
model (e.g., decision trees or neural networks). The
trainer fits the model to the training data y to
minimize the overall error min error=|y-h(x)| of the
trained hypothesis function h represented by the
machine model. But the local error minimization
can result in hypothesis functions with low overall
prediction quality regarding the desired deploy-
ment.

To evaluate trained machine models during training
iterations, an external scoring function has to be
applied using the original training data. the scoring
function Sc(y,h,x) returns three parameters s0, s1,
and s2. The s score parameters count true-positive
and false-positive sample prediction of the trained
discriminator function within given time intervals.

Figure 3. Scoring of a time-series prediction by a
pre-trained LSTM by comparing the training output
y(t) with the prediction of the ANN using the time
series x(t) (red curve: training output variable)

The s0 parameter scores the output of the trained
discriminator function in the time windows [0,t0]
and [t1,tend] (no damage). The parameter returns
the value 1 if the predicted output is always below
the threshold ythr0 within the interval. True-negative
values reduce the value towards zero. The parame-
ter s2 is only applied to the time window [0,t0],

and is used in this work since the damage event
discriminator function can fire after the first event
again. The s1 value should be one for successful
training. Finally, the parameter s2 scores the dam-
age event, i.e., counts the time samples that pro-
duce an output of the discriminator function above
the threshold ythr1. Since the training output pulse
width and starting time are chosen arbitrary, this
score value must at least greater zero.

2.6 Training Algorithm

The used LSTM-RNN architecture and trainer uses
a gradient error minimization algorithm to modify
weights of the neural network. As discussed in Sec.
5_, this gradient approach applied to the simulated
sensor data and the given training output mask
function was not suitable. It poses no monotonic
convergence and required an higher-level training
outcome scoring with the capability to reinitialize
the LSTM with new randomly chosen network
weights and to adapt the learning rate dynamically.
The iterative training trying to find a hypothesis
function of the discriminator satisfying the given
constraints is shown in Alg. 1.

The training was performed with one prominent
sample (damage case with nearest damage location
to the node at position x,y) and randomly chosen
data from one of the ten experiments performed
under similar conditions (but using Monte Carlo
methods to introduce variance in the data sets).

After trainings iterations the entire LSTM is reset
and a new learning sequence is started. If there is a
scoring set found not satisfying all constrains but
seems to be a starting point for convergence the
learning rate will be decreased to refine the model.

1: function train(
2: x,y,
3: sam,
4: par):
5: for 1 to trials do
6: ML ← new LSTM(par)
7: for 1 to trainings do
8: exp ← random ∈ {0,1,..,9}
9: ds ← {
10: data100[sam][exp]
11: data100[0][exp]
12: data250[sam][exp]
13: data250[0][exp]

5

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

14: }
15: ∀ data ∈ ds do
16: ML.train(data,par);
17: ∀ data ∈ ds do
18: sc[data] ←
19: score(ML.test(data),data);
20: if sc[data100[sam]].s1>s1Thr ∧
21: sc[data100[sam]].s2>s2Thr ∧
22: sc[data250[sam]].s1>s1Thr ∧
23: sc[data250[sam]].s2>s2Thr ∧
24: sc[data100[0]].s2>s2Thr ∧
25: sc[data100[0]].s2>s2Thr
26: then
27: found solution return ML;
28: if sc[data100[sam]].s2>0.9*s2Thr ∨
29: sc[data250[sam]].s2>0.9*s2Thr
30: then
31: decrease learning rate;
32: done
33: done

Alg. 1. Training algorithm for one localized discrimina-
tor function (at node (x,y))

The desired output (damage event prediction) of the
discriminator function is trained with a rectangular
pulse function. Using smooth pulse shapes showed
no improvement with respect to the learning pro-
gress and outcome. The starting time t0 is set to the
simulation step where the damage was introduced
(but showing a delayed effect). The width of the
pulse was chosen arbitrarily but with respect to the
overall learning outcome observed in multiple prel-
iminary experiments. The pulse function was used
by the scoring, too.

2.7 Distributed Multi-Instance Learning

Each local trained discriminator function is capable
to detect a damage event within the (ideally circu-
lar) neighbourhood of radius r with a probability p.
Neighbouring nodes can detect the same damage
event simultaneously enabling damage localization
by computing the mass of centre point. The princi-
ple distributed sensor fusion is shown in Fig. 4.

Additionally, the detection probability increases by
fusion of multiple prediction instances. False-
positive detections result in a distortion of the dam-
age position localization. Furthermore, false-
positive results can be rejected by cluster analysis.

Figure 4. Distributed Multi-Instance Prediction (D:
Damage, s: Sensors, d: Damage Discriminator
Function, cross: estimated position of damage)

2.8 Model Fitting and Permutation

Distributed multi-instance learning is effected by
bias of local environment constraints. I.e., a local
learning instance is only trained with its local data.
To derive more general models, a pre-trained net-
work can be exchanged by sensor nodes in the net-
work to improve bias-free or bias-reduced models
or used as a starting point for learning (instead of
random initial values for the weights). Although
model permutation is an eminent concept for learn-
ing of generalised discriminator functions, it is not
known in advance if this improves or degrades the
local models and has to be tested on case basis.
The experimental evaluation will show no improve-
ment (in contrast, a degradation is observed).

With respect to ANN the permutation can also be
applied to weights of neural node edges and nodes
itself including the change of the model structure
(removing or adding nodes and edges).

6

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

3. Modelling of Mechanical
Structure and Damages
(Fatigue)

Getting time-resolved experimental sensor data
from structures with a wide variety of hidden dam-
age cases is a challenge. To evaluate the proposed
multi-instance learning approach, synthetic sensor
data was computed by physical simulation using a
simplified multi-body physics model (MBP) con-
sisting of meshed mass-spring systems. A MBP
simulation is faster than commonly used FEM
simulation by several orders of magnitude.

3.1 Structural Model

A mechanical structure is modelled with a Graph
St=<M,Sp> ([5]), where M is a set of mass nodes
with a specific mass mi, and Sp is a set of spring-

St(P) = 〈M(P),Sp(P)〉

M =

⎡
⎢⎣

m1 · · · mj

...
. . .

...
mi · · · mn

⎤
⎥⎦ ,

Sp =

⎡
⎢⎣

sp1 · · · spl
...

. . .
...

spk · · · spm

⎤
⎥⎦

damper edges connecting mass nodes.

(3)

Each node mi has spring connections that are asso-
ciated to this node pointing to up to seven neigh-
bouring nodes (in three dimensions). details can be
found in [5].

The general MSN model graph St(P) is paremeter-
ised by a set of parameters defining the node mass
mmi, the spring stiffness constant skj, and optional-
ly a damper constant sdj. The choice of the param-
eters, which can be applied to all masses and
springs of the network, or individually to domains
of nodes and edges, is crucial for the mapping of
real physical material behaviour on the physical
simulation model described in the next section.

In this work, the node masses and spring constants
were chosen to characterise a linear elastic materi-
al, typically a purely elastic elastomer. Alternative-
ly, a non-linear spring force-distance model func-

tion can be used to model inealstic material
behaviour.

The Multi-body physics (MBP) simulation is com-
puted by the CANNON physics engine [11]. Strain
sensor data can be directly calculated from the
mass-spring network requiring only the distances
between mass nodes (available directly from the
CANNON engine). A low mass-node density is still
sufficient.

3.2 Damages and Fatigue

Modelling of real damages is a challenge. Com-
monly damages are modelled statically, i.e., without
an accurate time-dependent behaviour. Damages
and fatigue of materials develop and change over
time. Complex and hybrid materials like fiber-metal
laminates show a broad range of possible damages
(e.g., delaminations and cracks of fibers). The accu-
rate modelling of damage is out of scope of this
work. For the sake of simplicity, a damage within
the material as a result, e.g., of an impact, is treat-
ed as a material inhomogeneity. Such an inhomo-
geneity is created in the mass-spring model by in-
creasing the spring constants and reducing the
damper constants of mass nodes belonging to a vir-
tual damage by an order of magnitude.

In the experimental section the test structure is a
simple plate that is composed of 14 × 8 × 3 mass
nodes, and damages are represented by volumes of
3 × 3 mass nodes. This is a coarse grain modelling
of structure and damage. With respect to real dam-
age and material behaviour, it is expected that there
will be a large gap between simulation and real
world experiments. With an significant increase of
mass node density more accurate results can be ob-
tained and structures with complex geometries or
hybrid materials can be modelled. The computa-
tional time increase basically linearly in the order
of Θ(n) since each mass node requires the solving
of seven constraints [13].

4. Analysis and Learning
Framework

A closed-loop unified simulation and analysis
framework used in this work is shown in Fig. 5.

7

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

All input and output data is stored in SQL data
basses accessed by an unified SQLjson interface
with remote procedure call operational semantics
and encoding SQL requests in JSON+ format
(extended with objects, function code, and typed
arrays). The SQL servers provide generic SQL
requests and advanced support for a SQL-based file
system organizing tables in directory trees.

Figure 5. WorkBook connected to SQLjson server
via HTTP

All computations are performed in JavaScript ei-
ther in WEB-based Workbooks, similar to Matlab
scripts and Jupyter workbooks, but without any
server code execution (except the SQL servers).
The data is exchanged via the SQLjson RPC inter-
face with external SQL servers.

The workbooks (a command line version for nodejs
execution is available, too) provide a basic support
for code execution, plotting, communication, in-
teractive tables and some more GUI elements. Ad-
ditional plug-ins can be loaded providing extended
math modules, physical simulation using the CAN-
NON solver, and the ML plug-in providing a large
set of ML models and algorithms including a gen-
eric ANN module [12] with a network architect.
The network architect is used to construct the
LSTM-RNN from basic cells.

There were a set of workbooks used for simulation
(generating sensor data), machine learning deriving
the discriminator functions, and finally analysis.
The learned ML models as well as projects and do-
cumentations are stored in the SQL data bases, too.

5. Simulation and Evaluation

5.1 Test Structure

The test structure used to evaluate the proposed
multi-instance learning is a rectangular plate that is
layered at two sides on walls. The plate was
modelled with 14 × 8 × 3 mass nodes connected by
springs and dampers. The simulation starts with all
springs in equilibrium state. The gravity force act-
ing on all mass elements result in a bending of the
plate. After the highest bending was reached, the
plate swings back (elastic model). This results in a
damped vibration that is used for the detection of
damages. Details can be found in [5].

A damage is introduced after a given simulation
step (two situations with t0=100/250) by relaxing of
all springs between mass nodes of the virtual dam-
age and between nodes of the damage to the sur-
rounding nodes. The damage was a quadratic
volume of 3 × 3 × 1 mass nodes.

8

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

Figure 6. (a) MBP Modell of a plate (DUT) (b)
Sensor Network applied to surface of DUT (c)
Strain-gauge Sensors connected with sensor nodes
(d) Hidden holes in the DUT (red) and optional
load applied to the surface (blue) [5]

5.2 Sensor Data

The sensor network consists of 7 × 4 sensor nodes,
shown in Fig. 6 (b). Each node samples two con-
nected synthetic strain-gauge sensors (orthogonally
orientated), shown in Fig. 6 (c), which were
derived by computing the main strain of a volume
of 2 × 2 mass nodes.. The originally undamaged
plate DUT can be modified by adding virtual holes
inside (by relaxing springs connecting mass nodes
of the virtual hole) and prediction can be disturbed
by applying additional load to the upper surface
(not considered in this work), shown in Fig. 6 (d).
A typical time record of both strain sensors was
shown in Fig. 1.

Each load/damage situation was repeated ten times
using Monte Carlo techniques to get signal and
training variance. There are nine different damage
cases (H1, H2, .., H9) differing in their location
and two different time points at which the damage
was created (t0=100,250 sim. steps).

5.3 Experiments

The temporal sensor data sequences (strain in x-
and y-direction) derived from the physical simula-
tion was used to investigate different learner
models, algorithms, and learning parameter sets.
Each node of the sensor network uses a trained
discriminator function implemented with a LSTM-
RNN to detect damages in the spatial neighbour-
hood (radius < 3 arb. units). Each node performs
training of the ANN and application of sensor data
to the ANN. The LSTM consists of one hidden
layer with five neurons. The output neuron was
feed back to the memory and input gate cells.

5.3.1 Training and Prediction

Some examples of the application of a trained
discriminator function is shown inf Fig. 7. The
training was performed iteratively to find optimal
solutions:

• The typical training time for one node varies
between 8s and 80s using two positive case
records (450 time points each) and two negative
case records.

9

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

Figure 7. Some examples of the output of a trained
node instance for two different damage cases (dam-
age after T=100 and T=250 steps) and different
sub-cases (Hole nearby node N1/H1 or in the
neighbourhood H2 or no damage H0) using raw
sensor data (raw SIGNAL approach). The green
lines show the output of the post-processing using a
threshold function.

• Application of the discriminator functions re-
quires about 8ms for an entire signal record (500
time points).

• For all nodes a fixed LSTM-ANN architecture
was chosen with two input neurons getting the
raw time-resolved strain signals (sx,sy), five hid-
den layer neurons, and one output neuron provid-
ing the damage prediction.

5.3.2 Lessons learned

1. The ANN metrics (connection network, layers,
nodes) are difficult to be determined and the
optimal choice of the ANN metric can depend on
the sensor node position and its sensor signal
characteristics, the specific damage situation, and
the signal features.

2. Learning of a hypothesis function satisfying the
constraints is basically a random process. The
learning process is often trapped in local minima
with a hypothesis function not satisfying the
constraints.

3. Different ANN metrics (hidden layer
architecture), training metrics (learning rate, error
threshold, training scores), and input vectors
transformations (SIGNAL: raw sensor signal,
DERIV: high-pass or derivation, SFFT: moving
frequency window spectrum) were investigated to
derive a suitable damage event discriminator
function. Different settings can be improve
training results of different sensor nodes!
Derivation, high-pass, and spectral
transformations did not improve the results.
Therefore only raw unfiltered signals were
processes by the ANN.

4. There is no monotonic convergence in the
learning observed! In some cases a suitable
hypothesis function was found after one training
iteration, in other cases hundreds of iterations
were needed to find a solution satisfying the
constraints. Furthermore, model re-initialisation
with random weights is required to find a
suitable solution.

5. Small moving signal windows (batches) fed in
the ANN during training do not show any benefit
over a full time-scale frame of the entire signal

10

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

record that was finally used for training. In
contrast, window slicing during training leads
often to an empty hypothesis set (no suitable
model function found).

6. The gradient learning approach (fitting the
network weights) is not suitable. Internal low-
level cost and error functions applied to one
training record are not satisfying. Instead, higher
level scoring functions evaluating a large set of
training samples is required to find a solution.

7. Post-training with a low training rate of a pre-
trained network (with a higher training rate) can
improve the prediction quality (but sometimes
instead the prediction quality of the discriminator
function decreases).

8. Dynamic learning rate adaptation starting with a
high rate at the beginning to explore the solution
space with large steps and finally decreasing the
learning rate to a low value to settle to a solution
satisfying the constraints is promising, but
without a guarantee of convergence.

9. Node permutation or re-use of pre-trained
models from one node applied to another node
failed always. Generalized discriminator function
models could not be derived.

5.3.3 Distributed Multi-Instance
Prediction

A trained discriminator function of a single net-
work node can be used to detect the occurrence of
a damage event within a spatially bounded neigh-
bourhood of the node. There are multiple neigh-
bouring nodes that can predict the same damage
event (correlated clusters, see Fig. 8). This fact is
utilized to perform distributed sensor fusion by
computing the centre of mass position for a set of
nodes predicting a damage event within a given
time interval.

Results are shown in Tab. 1, concluding to:

• For early events (T100) all spatially different
damage cases can be detected accurately.

• For later events (T250) some damage cases are
not detected (H2, H8).

• The prediction quality of trained discriminator
functions vary for different nodes (and spatial
positions)

• There are some nodes of the network where the
training failed an no discriminator function could
be derived (nodes at logical positions (1,1), (1,2),
and (4,1)). The reason is unknown.

__
Damage T100

nfound

T250
nfound

T100 er-
ror

T250 er-
ror___

None 0 0 - -

H1 10 9 1.6 ± 0.3
(12%)

2.0 ±
0.02
(15%)

H2 7 0 1.7 ±
0.04
(13%)

-

H3 10 7 1.5 ± 0.1
(11%)

1.7 ± 0.1
(13%)

H4 10 9 1.2 ±
0.04
(9%)

2.0 ± 0.7
(15%)

H5 10 3 1.2 ± 0.2
(9%)

1.4 ± 1.7
(11%)

H6 10 10 1.1 ±
0.07
(8%)

1.4 ± 0.2
(11%)

H7 10 3 1.9 ± 0.2
(15%)

1.2 ± 0
(9%)

H8 10 0 1.1 ± 0.2
(9%)

-

H9 10 7 1.6 ± 0.3
(12%)

1.3 ± 0.3
(10%)__

Table 1. Fusioned (7 × 4 sensor nodes) true-positive
damage event predictions injected after 100 and 250
simulation steps (10 experiments and 9 different damage
cases, position prediction error ε ± σ2 values are in ar-
bitrary plate dimension units, percentage value is position
error relative to plate size)

• The prediction quality (true-positive probability) is
higher for early damage events (T100, about 95%)
than for later damage events (T250, about 60%).

11

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

• The mean position error of the fusioned damage
location is about 10% (relative to the plate size) and
can be considered as a precise location estimation.

Figure 8. Examples of the response of the individual
discriminator functions of the distributed sensor network
on time records (around t=[100,150]) with different dam-
age cases (H1..H9) occurred at t=100.

6. Conclusion

Although the training of state-based damage
discriminator functions mapping time-series of raw
sensor signals on damage detectors is a challenge,
some remarkable results could be achieved. The
quality (or even the successful training) of discrimi-
nator functions across the distributed sensor net-
works varies strongly. But due to overlapping dam-
age detection areas (redundancy) of single nodes,
the fusion of the outputs of all sensor nodes lead to
a significant improvement of the overall damage
event detection probability. The estimation of the

location of the damage by simple calculation of the
mass of centre of the sensor positions could be
achieved with an accuracy of about 10% relative to
the DUT size.

A hypothesis to be proved is that evolutionary al-
gorithms with permutation and back-tracking can
deliver better results and faster and more accurate
learning convergence of the discriminator functions
than gradient-based iterative ANN trainer used in
this work.

Finally, the physical model used to for the simula-
tion of the DUT has to be improved with respect of
mass node density, real material behaviour, support
for more complex geometrical structures and hybrid
materials. Damage and fatigue modelling closer to
real world experiments have to be established and
evaluated.

7. References

[1] L. Roseiro, U. Ramos, and R. Leal, Neural
networks in damage detection of composite
laminated plates, in Proceedings of the 6th
WSEAS Int. Conf. on NEURAL NET-
WORKS, Lisbon, Portugal, June 16-18,
2005, pp. 115-119.

[2] V. Ewald, R. M. Groves, and R.
Benedictus, DeepSHM: A Deep Learning
Approach for Structural Health Monitoring
Based on Guided Lamb Wave Techniques
(2019)

[3] E. P. Carden, Vibration Based Condition
Monitoring: A Review, Structural Health
Monitoring, vol. 3, no. 4, pp. 355-377,
2004.

[4] R. Jha and S. V. Barai, Neural Networks
and Genetic Algorithms in Structural
Health Monitoring, in Structural Health
Monitoring Technologies and Next-
Generation Smart Composite Structures, J.
A. Epaarachchi and G. C. Kahandawa,
Eds. 2016.

[5] S. Bosse, D. Lehmhus, Robust detection of
hidden material damages using low-cost
external sensors and Machine Learning,
6th International Electronic Conference on

12

Stefan Bosse - SysInt Conference 2020, Bremen, Germany

Sensors and Applications (ECSA), 15-30
Nov. 2019, MDPI

[6] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu,
and H. Zhang, Deep Learning with Long
Short-Term Memory for Time Series
Prediction, (2018) ArXiv 1810.10161v1
[cs.NE]

[7] Z. Tang, P. A. Fishwick, Feed-forward
Neural Nets as Models for Time Series
Forecasting, TR91-008 Computer and
Information Sciences, University of
Florida.

[8] F. A. Gers, J. Schmidhuber, (2001). LSTM
Recurrent Networks Learn Simple Context
Free and Context Sensitive Languages,
IEEE Transactions on Neural Networks. 12
(6): 1333–1340. doi:10.1109/72.963769.
PMID 18249962

[9] S. Yan, Understanding LSTM and Its
Diagrams, WEB resource
https://medium.com/mlreview/
understanding-lstm-and-its-diagrams-
37e2f46f1714 (accessed on 26.3.2020).

[10] N. M. Vural, S. Ergut, and S. S. Kozat, An
Efficient and Effective Second-Order
Training Algorithm For LSTM-based
Adaptive Learning. ArXiv 1910.09857v3

[11] Hedman, S., CANNON,
http://schteppe.github.io/cannon.js,
accessed on 1.11.2019

[12] Neataptic, Thomas Wagenaar,
https://github.com/wagenaartje/neataptic
(accessed 1.12.2019)

[13] A.P Pentland. (1991) ThingWorld: A
multibody simulation system with low
computational complexity. In: Sriram D.,
Logcher R., Fukuda S. (eds) Computer-
Aided Cooperative Product Development.
WCACPD 1989. Lecture Notes in
Computer Science, vol 492. Springer,
Berlin, Heidelberg

13

	Learning Damage Event Discriminator Functions with Distributed Multi-instance RNN/LSTM Machine Learning - Mastering the Challenge
	Document
	Introduction
	Learning of Time Series and Prediction of Events
	Discriminator Function and Learning
	Time-series and Window Slicing
	Recurrent Neural Networks (Long-short-term Memory)
	Hypothesis Constraints
	Scoring
	Training Algorithm
	Distributed Multi-Instance Learning
	Model Fitting and Permutation

	Modelling of Mechanical Structure and Damages (Fatigue)
	Structural Model
	Damages and Fatigue

	Analysis and Learning Framework
	Simulation and Evaluation
	Test Structure
	Sensor Data
	Experiments
	Training and Prediction
	Lessons learned
	Distributed Multi-Instance Prediction

	Conclusion
	References

