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Abstract. Traffic flow optimisation is a distributed complex problem. Traditional traffic and logistics flow control algo-
rithms operate on a system level and address mostly switching cycle adaptation of traffic signals and lights. This work ad-
dresses traffic flow optimisation by self-adaptive micro-level control by combining Reinforcement Learning and rule-
based agent models for action selection with a new hybrid agent architecture. I.e., long-range routing is performed by
agents that adapt their decision making for re-routing on local environmental sensors. Agent-based modelling and simula-
tion are used to study emergence effects on urban city traffic flows with learning agents. The approach and the proposed
agent architecture can be generalised and applied to a broader range of application fields, e.g., logistics and general tran-
sport phenomena.

Keywords. Agent-based Reinforcement Learning; Traffic flow control; Logistics Transport control; Self-organising MAS;
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1. Introduction

Traffic jams and disturbance in traffic flows are
ubiquitous in modern cities. Traffic is a distributed
complex problem with hard predictable dynamics
on global domain. Logistics is a closely related
domain with overlapping dependencies. Both
domains can be considered basically as a distribut-
ed optimising problem of a large-scale dynamic
system including chaotic effects. Arising of jams,
dead locks in traffic flows without a clearly
identifiable cause, or transport delays are prominent
examples. A traffic situation as well as logistics
transport [1] consist of a large set of individual en-
tities treated as agents that interact with each other
and satisfying constraints (i.e., streets, traffic signs,
traffic rules, dangerous situations, and so on). Indi-
vidual traffic entities are controlled by a set of
behaviour rules. These behaviour rules can be
significantly influenced by varying parameter sets
(i.e., different classes of drivers and individualism
of behaviour and goals) and decision making. The
individual entities are controlled by a set of sensors
S, representing the individual entity, local area, and
global area states.

Commonly, traffic flow is controlled via traffic sig-
nals (traffic lights) and dynamic signs (e.g., speed
control) based on accumulated flow data (real-
time). Logistics transports obeys similar control in-
frastructures. There are different (basically spatial)
domains considered by controllers and learner in-
stances that have to be distinguished: Global (urban
city scale), "glocal" (transition from global to local
level, i.e., connected groups of streets and street
areas), local (one street, part of a street, a
crossroad and street junctions, crowds), and micro
level (single vehicles or people). Adaptive traffic
flow control on different spatial and domain levels
is attractive to reduce travelling times and energy
consumption (i.e., air pollution). Most work in this
field focuses on traffic signal control (e.g., an over-
view can be found in [2]). Other aspects like indi-
vidual driver decision making and path routing
influencing traffic flows of is not considered.
Although there are traffic simulation that consider
driver behaviour, an assumption of average
behaviour is made without considering real-world
variations [3]. Only few work is known that incor-
porates crowd sensing data (one example can be
found in [4]).

Machine learning can be used to improve traffic
flow control and user experience on macro- and
micro-scale level (local optimisation). But the re-
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quired training of ML models cannot be performed
in real-world environments. Simulations can
overcome this limitation and can be used to (pre-
)train machine learners and to investigate different
traffic flow control and machine learning
algorithms. But simulation relies commonly on
simplified, averaged and unified behaviour models,
simplified environments and situations. Agent-based
modelling and simulation (ABMS) is suitable for
large-scale, distributed, and complex dynamic
systems with local interaction models [5].

Traffic flow control should be achieved on three
levels:

1. Ensemble control by the environment (using
traffic signals and signs) using common traffic
control algorithms based on sensor data (collect-
ed, e.g., by street cameras);

2. Individual control by driving entities. e.g.,
influencing long-range routing and decision mak-
ing of individuals via social media or navigation
systems → addressed in this work;

3. Local automatic group control (i.e., car-to-car
communication and control) using local interac-
tion agents.

In [6] and [7], self-organising traffic control was
applied to traffic light signal switching. In this
work, there is a focus on self-organising traffic
flow control on individual level (level 2) by support
decision making processes of drivers (or automatic
or more advanced of autonomous vehicles), particu-
lar addressing short- and long-range routing.

In previous work. the influence of behaviour model
variations from an average behaviour of traffic enti-
ties (drivers, passengers) were investigated by using
ABMS with digital twins derived from CWS [5].
Commonly, agent-based simulation and agent-based
distributed computing (ABC) performing the traffic
control are separated. The approach from [5] unites
simulation and real-world data processing by an
unified mobile agent-model covering ABM, ABS,
and ABC, enabling the tight coupling of real and
virtual (simulation) worlds in real-time.

The approach in this work is composed of three
paradigms to create smart traffic control: 1.
Cooperating and interacting multi-agent systems; 2.
Reinforcement learning (RL); 3. Self-organisation

and self-adaptivity. RL (e.g., Q-learning) was alera-
dy applied to traffic control [8].

A model-free agent-based reinforcement learning
approach is used and evaluated in this work to en-
able self-organising traffic flow control on micro-
scale entity level [2]. Self-organising is implicitly
performed by solving or rewarding constraints
between physical entities and sensor feedback, e.g.,
distances between vehicles, spatial street con-
straints, and so on. Agent-based reinforcement
learning is already applied in broad range of appli-
cations, including traffic control and decision mak-
ing in logistics combined with simulation [1].

RL is closely related to the agent model. In [9],
multi-agent systems perform distributed traffic sig-
nal control. Among distributed learning, distributed
learning-agents can be deployed, each operating on
a local state and optimising a sub-set set or one
particular target variable. This approach requires
co-ordination to optimise on global level imple-
menting distributed co-ordination of exploration
and exploitation (DCEE, introduced by Brys et al.
[10]).

The main objective of this work is to find a multi-
agent-based and self-organising urban traffic con-
trol architecture suitable to optimise traffic flow,
i.e., increasing the average traffic flow speed,
minimising or completely avoiding jams, minimis-
ing the travelling times with respect to passengers,
and minimising energy for mobility. In contrast to
other work ([8], [11], [9], [10], [2]) controlling
traffic lights and signals only, this work will focus
on the control of decision making processes of
adaptive long.range routing only incorporating ex-
perience and history situations.

A novel hybrid agent architecture based on coupled
reactive rule-based and learning-based action selec-
tion for long-range navigation in cities is intro-
duced and finally evaluated with agent-based simu-
lation.

2. Agent-based Modelling and
Simulation of Traffic

This section introduces the extended agent architec-
ture coupling the original activity and rule-based
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agent model with RL and identifies state (sensor)
variables required for decision making and
learning.

There are two classes of agents covered by one
unified agent model that is used in this work (see
[5] for details): 1. Physical behavioural agents
representing physical entities in virtual worlds
(simulation) like vehicles or individual artificial hu-
mans; 2. Computational agents representing
mobile software in real and virtual world, i.e., used
for distributed data processing and digital commun-
ication, and used for implementing sensing and
negotiation bots.

Both types of agents are used in the simulation, but
only computational agents can migrate between the
simulation world and real world environments. The
computational agents are required for seamless in-
tegration of mobile crowd sensing into the simula-
tion (optionally in real-time), discussed in the next
sub-section

Hybrid Rule- and Learning-based Agent
Architecture

Although RL agents itself pose a well defined ar-
chitecture, in this work the RL instance is used as
a co-function for the state transition and action
computation, shown in Fig. 1. Now there are two
output functions action and RL that select appropri-
ate actions to be executed by a controller agent
(i.e., controlling the vehicle). Although both output
functions can select actions from the same set of
actions Act, it is feasible to split the action set in
two sub-sets Act1 and Act2 used by the two output
functions, respectively. A final fusion of both action
selections (that can be contrary or cross-forbidden)
is performed by the fusion function. There are three
different RL algorithms mapping state variables on
actions available for the agent: 1. Temporal Differ-
ence Learning; 2. Dynamic Programming; 3. Deep
Q Learning. The addition of the RL function ex-
tends the functional agent model of reactive state-

percept : Sen× Per → Per

next : St× Per × Par ×R× C → St

action : St× Par → Act1

rl : r × Per× → Act2

reward : Act2 × Per × Par → r[−1, 1]

fusion : Act1 ×Act2 → Act

based agents [5]:

(1)

Figure 1. The proposed hybrid parameterised agent
architecture combining reactive state-based action
selection with RL

The parameter set can be changed at run-time by
the agent itself to adapt to specific known or new
situations, eventually modified by the RL instance,
too. The parameters define also the superposition of
rule-based and learning-based action selection (in
the range from 0-100%).

The fusion function is basically a lazy constraint
solver that checks the two actions provided by the
rule-based action function and the predicted action
from the RL function. The constraint solver checks
for contradiction and invalid actions. That means it
refuses invalid actions with respect to the current
agent state. For instance, changing the direction is

3



Stefan Bosse - SysInt Conference 2020, Bremen, Germany

currently not possible (spatial constraints) or re-
routing exceeds a specific frequency. The selected
action output of the fusion is feed back to the
reward function (comparing the fusioned and the
predicted action).

3. Coupling Multi-Agent Systems
and Reinforcement Learning
for Traffic control

The self-organised traffic control (in sense of op-
timisation) MAS consists of the following agent
classes: 1. Vehicle controller agents performing
basic rule-based car control and short-range naviga-
tion; 2. Communication agents (bridging vehicles
and TSC entities); 3. Navigation agents (coupled to
vehicles) performing adaptive and optimised long-
range navigation using Reinforcement learning
(RL); 4. Traffic controller agents (rather simple in
this work)

RL can be applied to traffic signal control (RL-
TSC) on global or local environmental domain lev-
el and/or to entity control on individual level, e.g.,
vehicle control. Hierarchical and domain-based
learning was proposed by Abdoos et al. [11]. An
RL instance is associated to a learner agent that
can be coupled to other agents, like traffic control
or driver agents. The RL agent outputs a recom-
mendation for actions to be considered by a con-
troller agent, e.g., speed limitation, traffic light
switching, or route planning and decision making.
There are centralised Single Agent RL (SARL) and
decentralised Multi Agent RL (MARL) approaches.
This work covers a hierarchical MARL approach.

RL requires sensor input S and a feedback via utili-
ty and conflict functions defining the reward func-
tion u(S). An RL model outputs an action a from a
set of possible actions A executed by the controller
agent. The sensor system for traffic lights is usually
based on stationary vehicle detectors, like inductive
loops or cameras using vision algorithms to identi-
fy vehicle flows. Most traffic control algorithms
consider only actual traffic situations without con-
sidering predictions of future variations, flows, and
context changes. The sampling of vehicle data is
often inaccurate, e.g., the speed of vehicles, intro-
ducing sources of error. Other variables influencing

traffic like crowd flows, events (emergencies, work
closings, shopping), and time-specific crowd flow
variations are commonly not considered in traffic
flow control. Sensory input from social media and
other urban sensors can be considered by ML, too.

The sensor input S is union of three sets:

1. Internal sensors (GPS, speed, direction)

2. Environmental sensors (distance)

3. Global sensors (traffic, jam, crowds)

S(�x, t, state) = Sinternal ∩ Sexternal ∩ Sglobal (2)

On macro-level, the main issue in RL-TSC is the
determination of the state of the environment from
sensors that is represented to the RL agent. Typical
state variables (on a macro-scale level) are:

StateVariables-Macro = {
ql: Average queue length,
qt: Average waiting time,
fr: Average flow rate,
va: Average vehicle speed

(normalised to speed limit),
te: Average travelling time

efficiency,
pe: Average travelling distance

efficiency,
st: Signal change times and delays,
en: Energy (electrical energy or

fuel consumption),
ut: User satisfaction (overall utility)

}

With respect to the micro-scale level, another set of
state variables are introduced to provide sensors S
of variables capable to detect traffic situations from
the view of point of single vehicles:

StateVariables-Micro = {
v0: Normalised average speed,
ds0: Distances to s={front, back,

left, right}
neighbour vehicles,

de, Δde: Distance to destination and
delta change (progress),

td: Direction to destination
(0-360 degree),

r0: Direction of vehicle
(0-360 degree),
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qt0: Queuing time,
dd: Allowed driving and turning

directions,
P: Set of possible paths from

current position to destination
}

These state variables are primarily used to adapt
the vehicle driving control based on self-
organisation of local ensembles and to recognise
jam situations (present and future situations). For
each state variable x0 there is a desired value x1.
Fig. 2 shows the principle MAS configuration, the
sensors of the agents, and their communication
paths. Vehicle agents (consisting of a coupled con-
troller and learner agent pair) can sense their neigh-
bourhood using their own sensors, the sensors from
neighbouring vehicles, and the sensors of nearby
traffic light signals stations.

A traffic agent uses the following state variables:

StateVariables-Traffic = {
ql: Queuing length,
qT: Queuing time,
va: Average vehicle speed,
fr: Flow rate,

}

There are three different RL algorithms mapping
state variables on actions available for the agent: 1.
Temporal Difference Learning; Dynamic Program-
ming; 3. Deep Q Learning. Only the latter is suit-
able for continuous state spaces!

The reward function returning a value in the range
[-(a+b+c),(a+b+c)] (a,b,c are weight factors) of the
vehicle agent uses the superposition of the ratio of
actual and average speed, actual and average queu-

u = a v0−v̄0
max(v0,v̄0)

+

b qt0−qt0
max(qt0,qt0)

+

c sd−sd
max(sd,sd)

ing time, and the progress to reach the destination:

(3)

Vehicle agents can communicate with neighbouring
nodes to get group (vehicle ensemble) sensor data
(e.g., queue length). Additionally, vehicle agents
nearby a traffic light signal can communicate with
the traffic controller agent to get switching infor-

mation (remaining time of green/red phase, switch-
ing times, ..) and traffic flow sensor data.

The learned RL models are portable and mobile, so
they can be exchanged between a set of agents
selecting the best trained models from a set of
models or by permuting models to improve predic-
tion. Since RL is an incremental learning method,
the pre-trained models are improved during run-
time (application and learning) with new feedback
(reward).

Figure 2. Agents, their sensors (sx with respect to
the sensor variable x), and agent communication
paths (Agts: Traffic sign agent, Agv: Vehicle agent)

Behaviour of Vehicle Agent

The vehicle agent is responsible to implement deci-
sion tree and rule-based automatic driving to satisfy
the following constraints: 1. Driving on the right
side of a street in the currently selected direction
(North, South, West, East); 2. The vehicle speed v
may not be higher than the speed limit on the
current road: v<vmax; 3. The distance to the next
vehicle ahead may not be lower than a speed-
dependent distance limit: df < dfmin; 4. There may
no collision (two vehicle may not occupy the same
place): (xa,ya) ≠ (xb,yb). Any violation of these con-
straints results in the execution of an action of the
set of actions A:
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Act = [
Moving one step

left, right,
backward,
or ahead: |Δ|=1,

Increasing or decreasing the
vehicle speed,

Follow short-range Δ displacement
vector (minΔ),

Stopping movement
]

A rule-based decision tree is used to select an ac-
tion a of the set of actions A.

Behaviour of Navigation Agent

The navigation agent is responsible for long-range
navigation to optimise the following target vari-
ables: 1. Distance to destination; 2. Average Veloci-
ty; 3. Travelling time. It uses the previously intro-
duced RL mapping sensor input on actions passed
to the vehicle agent. The navigation agents gets
sensor input from the vehicle agent.

Act = [
Change direction to N/S/W/E,
Keep direction (forced),
Change vehicle speed,
Change destination,
Escape blocking situations

]

4. Simulation Study and
Evaluation

The experiments were performed with the SEJAM2
simulation framework (detailed description in [5]).
The simulation world consists of an artificial street
map with 14 long streets (36 street segments) ar-
ranged in a two-dimensional grid (horizontal and
vertical orthogonally crossing streets), 49
crossroads and junctions, and 144 traffic light sig-
nals. For the sake of simplicity the world is discre-
tised by a mesh grid (100 × 100 cells).

The simulation was carried out with 200 vehicle-
navigation agent groups with a static parameter set.
The vehicle agent represents a physical vehicle and
performs rule-based short-range navigation. The
coupled navigation agent performs rule- and

learning-based long-range navigation.

For a first evaluation of the new micro-level traffic
control approach, fixed green-red cycles (50%-50%
duty cycle) and mutual exclusive switching of per-
pendicular crossings of streets are assumed.

Each navigation agent has a randomly chosen start
and end point on the street map. After a vehicle
reaches its destination it restarts driving to its origi-
nal starting point and vice versa.

A simplified RL function using Q-learning (DQN
agent) with a neural network was chosen with a
sub-set of vehicle state variables and a sub-set of
vehicle control actions changing the direction of

rl(sl, sr, sf , sb, de,Δde, td, r0, v0) :

(sl, sr, sf , sb, de,Δde, td, r0, v0) →
{North, South,West, East, turn, speed+, speed−}

the vehicle by long-range navigation:

(4)

The sdir sensors (vectors) provide spatially resolved
information of vehicles and streets in current left
(l), right (r), front (f), and back () direction of a
vehicle (deriving *df, db, dl, dr, dd state vari-
ables). The reward function us(S) consider the
current time scaling ts, path efficiency pe, distance
progress Δde, and the suitability of the vehicle
direction.

The iterative learner of each instance used a
discount factor of γ=0.9, an ε-greedy policy value
of 0.2, and a learning rate of α=0.05.

Some preliminary simulation results showing the
progress and improvement of traffic in Fig. 3 with
continuous training runs of navigation agents. The
learning leads to an an increasing influence on the
route planning (short-range and long-range). The
average vehicle speed was 1/5 world grid steps /
simulation step. About 2000 training events (re-
warding actions) in 400k simulation steps were ap-
plied to each learning instance.
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Figure 3. (Left) Progress of learning of all vehicle
instances (Right) Improvement of utility on global
scale with respect to the path and travelling time
efficiency

There is a significant improvement observed of the
utility on global scale with respect to the path and
travelling time efficiency (defined by the ratio of
the shortest to the routed path length and travelling
times) by about 50%. The reward (accumulation of
all 200 learning instances) show a monotonous in-
creasing (starting initially with negative values not
shown). The overall learning error (returned by the
learner instances in arb. units) decreases monoto-
nous, too. The short-range navigation error (sug-

gesting not allowed directions) decreases
significantly during learning progress. No traffic
jams or deadlocks were observed with RL naviga-
tion in contrast to earlier work in [5] using pure
rule-based and non-adaptive routing.

5. Conclusion

In contrast to common traffic management control-
ling traffic lights and signals only, this work ad-
dressed traffic flow optimisation on micro-level by
adapting decision making processes, primarily re-
routing and vehicle speed control. Vehicles were
represented by vehicle agents provided with an ex-
tended set of sensors and performing automatic
driving (short-range navigation). A navigation agent
performing long-range routing is controlled by a
novel agent architecture with a composition of the
classical reactive state-based agent model and rule-
based action selection with RL and reward func-
tions.

Preliminary results from an agent-based simulation
of an artificial urban area show that the deployment
of micro-level vehicle control just by individual de-
cision making and re-routing based on local en-
vironmental sensors can improve the traffic flow on
global level significantly in terms of path length
and travelling times compared with shortest path
navigation (without RL).

The proposed hybrid agent architecture can be de-
ployed in a broad range of self-organised path op-
timisation problems with interacting entities, e.g.,
logistics and transport problems. Local and ubiqui-
tous as well as global sensor input is required to
perform RL. Training requires a high number of
learning iterations (RL feedback updates) not suit-
able to be performed in real worlds. Instead large-
scale agent-based simulation is used to pre-train the
agent finally adapting in real worlds.

Further investigations have to be carried out to
evaluate the global emergence and stability. The de-
cision making of vehicle agents relies on rules and
a black-box function learned from only a few state
variables. One highly interesting aspect to be con-
sidered and evaluated is the possibility to exchange
already learned models with other navigation
agents introducing multi-agent co-operation and im-
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proved optimisation (model permutation).
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