
The VAMNET Book

The Virtual Amoeba Machine Environment, AMUNIX and the
VX-Amoeba System.

Distributed Programming, Measuring and Controlling
Services

Perlimenary Version 1.0.23

Dr. Stefan Bosse

BSS LAB

Table of Content

FUNDAMENTALS . 1
OVERVIEW . 1
FIELDS OF APPLICATION . 2
ADVANTAGES OF A HYBRID SYSTEM . 2
GOALS AND MOTIVATION . 3
SOLUTION METHODS . 5
AMOEBA CONCEPTS . 7

AMOEBA COMMUNICATION . 8
STANDARD OPERATIONS . 8
REMOTE PROCEDURE CALL . 9
NETWORK PROTOCOL FLIP . 11

AMOEBA OBJECTS AND CAPABILITIES . 13
DNS: NAME MAPPING OF AMOEBA CAPABILITIES . 14

VX-KERNEL . 17
AMUNIX . 24
VAM - THE FUNCTIONAL APPROACH . 26
VAMRAW . 36
VAMNET . 37
PERFORMANCE . 39

FLIP . 42
FLIP SERVICE DEFINTIONS . 43
FLIP HOST INTERFACE . 44
FLIP PROTOCOL . 46

FLIP FRAGMENT FORMAT . 47
FLIP MESSAGE TYPES . 48

FLIP ROUTING PROTOCOL . 49

AMOEBA . 51

AMUNIX . 52

AMCROSS . 53

VX-KERNEL PROGRAMMING . 54
KERNEL SCHEDULER . 55
OVERVIEW . 57
MEMORY MANAGEMENT . 61
IO-PORT ACCESS . 62
TIMER . 64
THREAD MANAGEMENT . 66
RESOURCE MANAGEMENT . 68

IO PORTS . 69
DEVICE MEMORY . 70

KERNEL RUNTIME CONFIGURATION . 71
KERNEL SERVER . 73

RANDOM - THE RANDOM NUMBER SERVER . 74
SYNOPSIS . 74
DESCRIPTION . 74
INTERFACE . 74
ADMINISTRATION . 74

VX-KERNEL: EXTERNAL DEVICE DRIVERS . 75
DEVICE DRIVER CONCEPTS . 76
I/O PORT MANAGEMENT . 77

TABLE OF CONTENT i

PORT RESOURCES . 78
PORT ACCESS . 80
EXAMPLE: USERPROCESS I/O . 82

INTERRUPT HANDLER . 83
UTIMER . 86
IPC . 87

VAM DEVELOPMENT SYSTEM . 88
INSTALLATION . 89

BUILDING VAM . 90
DIRECTORY STRUCTURE . 92

COMPILING ML TO BYTECODE . 94
THE VAMC SCRIPT . 95

USAGE . 95
PROGRAM ARGUMENTS . 95
EXAMPLES . 95

AMAKE CONFIGURATION MANAGER . 96
ML-LIBRARY: AMOEBA.CMA . 99

CONTENT . 100
MODULE: AMOEBA . 101

BASIC TYPES . 101
BASIC FUNCTIONS AND VALUES . 102
ENCRYPTION AND RIGHTS . 103

MODULE: AR . 106
AMOEBA TO STRING . 106
STRING TO AMOEBA . 106

MODULE: BOOTDIR . 108
MODULE DEPENDENCIES . 109

MODULE: BSTREAM . 110
MODULE DEPENDENCIES . 110

MODULE: BUF . 111
BUFFER PUT FUNCTIONS . 111
BUFFER GET FUNCTIONS . 112
FILE UTILS . 113
MODULE DEPENDENCIES . 113

MODULE: CACHE . 114
MODULE: CAP ENV . 115
MODULE: CAPSET . 116
MODULE: CIRCBUF . 117
MODULE: CMDREG . 120
MODULE: DBLIST . 121
MODULE: DES48 . 122
MODULE: DIR . 123
MODULE: DISK CLIENT . 125

MODULE DEPENDENCIES . 125
MODULE: KTRACE . 127
MODULE: MACHTYPE . 128
MODULE: MONITOR . 131
MODULE: NAME: . 132
MODULE: PROC . 133
MODULE: RPC . 134

EXAMPLE . 135
MODULE DEPENDENCIES . 136

MODULE: STDCOM . 137
MODULE: STDCOM2 . 138

TABLE OF CONTENT ii

MODULE: STDERR . 139
MODULE: STDOBJTYPES . 140
MODULE: SIGNALS . 141
MODULE: VIRTCIRC . 142

ML-LIBRARY: BUFFER.CMA . 144
MODULE: BYTEBUF . 145

BASIC FUNCTIONS . 145
STRING MODULE COMPATIBILITY . 146

ML-LIBRARY: DDI.CMA . 148
MODULE: DDI . 149

IO PORT MANAGEMENT . 149
IO PORT ACCESS . 149
TIMER . 150
MODULE DEPENDENCIES . 151

ML-LIBRARY: SERVER.CMA . 152
CONTENT . 153
MODULE: AFS COMMON . 154

AFS REQUESTS . 154
RIGHTS . 154
COMMIT FLAGS . 155
MODULE DEPENDENCIES . 155

MODULE: AFS CLIENT . 156
FILE REQUESTS . 156
ADMINISTRATION REQUESTS . 158

MODULE: AFS SERVER . 160
DATA STRUCTURES AND TYPES . 160
INTERNAL SERVER FUNCTIONS . 162
SERVER REQUEST FUNCTIONS . 163
MODULE DEPENDENCIES . 165

MODULE: AFS SERVER RPC . 166
MODULE: AFS CACHE . 167
MODULE: DISK COMMON . 170

PARTITION STRUCTURE . 170
DISKLABEL STRUCTURE . 170
VIRTUAL DISK STRUCTURE . 170
DISK DEVICE STRUCTURE . 171

MODULE: DISK PC86 . 173
MODULE: DISK SERVER . 174

MODULE DEPENDENCIES . 175
MODULE: DISK SERVER RPC . 177
MODULE: DNS COMMON . 181

REQUESTS AND RIGHTS . 181
FUNCTIONS . 182
MODULE DEPENDENCIES . 182

MODULE: DNS CLIENT . 184
DNS LOOKUP . 184
MODULE DEPENDENCIES . 184

MODULE: DNS SERVER . 185
BASIC STRUCTURES . 185
VALUES . 187
INTERNAL FUNCTIONS . 187
DIRECTORY TABLE MANAGEMENT . 188
CLIENT REQUEST HANDLERS . 189
MODULE DEPENDENCIES . 191

TABLE OF CONTENT iii

MODULE: DNS SERVER RPC . 192
MODULE DEPENDENCIES . 192
EXAMPLE . 192

MODULE: OM . 197
SETUP CONFIGURATION, INITIALIZATION AND LOOPING . 197
EXAMPLE . 197

MODULE: VAMBOOT . 199
BOOT LOACTION . 199
SOURCE FILE LOCATION . 199
BOOT OBJECT DESTINATION SYSTEM . 199
BOOT OBJECT STATUS AND OPERATIONS - THE ENVIRONMNT . 200
BOOT OBJECT DESCRIPTOR . 200
BOOT OBJECT PUBLIC INTERFACE . 201
EXAMPLE . 201

ML-LIBRARY: THREADS.CMA . 204
MODULE: THREADS . 205
MODULE: MUTEX . 207
MODULE: SEMA . 208

VAM RUNTIME ENVIRONMENT . 209
BUILDING A SMALL AMOEBA RUNTIME SYSTEM . 210
VM: VAMRUN . 215
AFS UNIX . 216

USAGE . 217
DNS UNIX . 219

USAGE . 220
STD . 222

USAGE . 223
VASH . 224

STANDARD OPERATIONS . 225
EXAMPLES . 225

DIRECTORY OPERATIONS . 226
EXAMPLE . 226

ENVIRONMENT VARIABLES . 227
PROGRAM AND SCRIPT EXECUTION . 228

VAX . 229
USAGE . 230
EXAMPLES . 231

VDISK . 232
USAGE . 233

XAFS . 234

TUTORIAL: ML-VAM PROGRAMMING . 235
STATUS CHAIN . 236

EXAMPLE . 236
SERVER LOOP . 237

EXAMPLE . 237

THE MANDOC DOCUMENTATION TOOL . 238
SECTIONS . 239
SPECIAL BLOCKS . 240
PARAGRAPH ELEMENTS . 244
PROGRAMMING INTERFACES . 245
PROGRAMMING INTERFACE . 248

MODULE: DOC CORE . 249
MODULE: DOC LATEX . 252

TABLE OF CONTENT iv

MODULE: DOC HTML . 253

DEBUGGING . 254
VAM . 255

VAM-DEBUGGER . 256
VX-KERNEL . 259

REFERENCES . 261

TABLE OF CONTENT v

Fundamentals

Overview

The VAMNET is a hybrid operating system environment for distributed applications in a hetero-
geneous environment, concerning both the hardware architectures used and operating systems
already present, for example the UNIX-OS. The VAMNET consists of several parts. Some of them
can operate standalone. All of them built up a hybrid distributed operating system environment
with some new features never seen before. These parts are:

1. The VX-Amoeba kernel, a compact and powerfull microkernel with distributed operating
systems features.

2. The VX-Amoeba environment, primary consisting of libraries supporting process execu-
tion on the top of the VX-Kernel, building a network distributed operating system.

3. The AMUNIX environment: Amoeba (concepts) on the top of UNIX like operating systems!
4. The AMCROSS crosscompiling environment necessary for building native VX-Amoeba tar-

get binaries programmed in C.
5. VAM: The Virtual Amoeba Machine. This machine unites the core Amoeba concepts with

the world of functional programming in ML and bytecode execution machines for portable
and some kind of safe execution of programs. All Amoeba system servers, needed to build
up a distributed operating system, were reimplemented with VAM-ML. VAM programs can
be executed both on the top of the AMUNIX and the VX-Kernel process layer.

Figure 1 gives a graphical overview of all these components.

ETHERNET

VAM
VX-Amoeba

PC104

EXE VAM
VX-Amoeba

PC104

EXE VAM
VX-Amoeba

PC104

EXE

VAM
VX-Amoeba

PC104

EXE VAM
VX-Amoeba

PC104

EXE VAM
VX-Amoeba

PC104

EXE

VAM EXE

UNIX/X11
AMUNIX

PC

VAM EXE

UNIX/X11
AMUNIX

PC

VAM EXE

UNIX/X11
AMUNIX

PC

VAM EXE

UNIX/X11
AMUNIX

PC

Eth-Switch

(Fig. 1) All the components of the VAMNET system together in an example configuration.

The VAMNET is an ongoing research and development project by Dr. Stefan Bosse from the

FUNDAMENTALS 1

BSSLAB laboratory, Bremen Germany, started in the year 1999, currently converging to his final
stage.

Fields of application

1. Distributed measuring and data acquisition systems, for example remote digital camera
servers connected with an ethernet network equipped with digital imaging software.

2. The native Amoeba kernel is very well suited for embedded systems, like PC104 single board
equipmment.

3. Distributed systems for machine control.
4. High performance parallel computing and other distributed numerical computations.
5. Distributed filesystems on the top of standard operating systems.
6. Distributed remote (wireless) robot control.
7. Educational tool for the convinient study of distributed services and operating systems.

Advantages of a hybrid system

1. The basic concepts of the distrubted operating system Amoeba are avialable with common
operating systems with a convinient desktop environment. New operating systems mostly
lack of actual device drivers, especially on the i86-pc platform with a wide spectrum of avail-
able hadrware.

2. For specializied (perhaps embedded) machines, for example data acquisition systems, or
hadware device reduced numeric cluster machines, the native Amoeba kernel is the best
choice, featuring a modern and clean microkernel, and exploring the power of the Amoeba
system.

3. Both worlds, embedded and specialized computers and desktop computers, can be merged
with simple but powerfull methods and concepts using a hybrid system solution. Each ma-
chine gets the system which fits best.

FUNDAMENTALS 2

Goals and Motivation Fundamentals

The design goals and motivations for such a hybrid system are:

➤ A simple method to connect hardware and operation reduced embedded systems, for example
PC104 boards, with an already existing pool of computers, for example PCs.

➤ On the desktop computer side, the existing operating system must be kept full operable and
useable.

➤ On the embedded system side only an operating system kernel should be booted (as a starting
point) from an arbitrary data storage medium, and not a full sized operating system.

➤ The system should be used without the necessity of explicit network configuration. There is no
knowledge of the network topology needed.

➤ Complete and easy control about the embedded systems by the desktop machines.

➤ But all nodes of the system - independent from their hardware resources and type (embedded or
desktop) - should be treated as machines with same rights and access methods without handling
them within a master-slave hierarchy.

➤ The system and processor architecture of the machines may differ. The operating system must
be therefore capable of supporting different architectures.

➤ Furthermore, it must be possible to execute user programs on different system and processor
architectures without recompiling programs for the target architecture.

➤ An easy way to implement hardware device drivers without the necessity of understanding com-
plex methods and device driver models inside the operating system kernel and the possibility of
rapid prototyping.

Figure 2 shows a common configuration situation of such a system.

PC104

PC104

PC104

HD

CF

FLP

I/O

I/O

I/O

DESKTOP DESKTOP

���� �� ����
���
�

Network

(Fig. 2) A common configuration situation. [PC104: embedded system board, IO: external
hardware input & output interface, FLP: Floppy drive, CF: compact flash card, HD: hard
disk storage]

FUNDAMENTALS 3

The hardware reduced embedded systems can be used to control directly special electronics like mea-
suring devices, all kind of laboratory equipment, microcontroller programming, or industrial machines
used for example for CNC milling.

FUNDAMENTALS 4

Solution methods Fundamentals

The first expected standard solution for network coupled systems is using a UNIX like operating sys-
tem like Linux or FreeBSD, from now called UNIX for simplicity, on all embedded and desktop nodes.
There are many disadvantages of this approach:

➤ A monolithic UNIX kernel is not standalone operable. It needs a lot of programs running outside
the kernel to enable network access.

➤ This UNIX kernel needs a root filesystem and therefore an integrated hard- or flashdisk or access
to a remote filesystem, for example NTFS.

➤ UNIX is commonly using the TCP/IP network protocol family to communicate between network
nodes. But IP needs explicit network knowledge and user configuration. At least something
like a Boot DHCP-Server is needed. The IP protocol familiy is not suitable for high performance
communication, concerning transfer throuput and latency.

➤ There is no direct and complete control about an embedded system operating with UNIX from
another desktop machine. Some kind of terminal session is nedded like a SSH connection.

➤ A kernel reboot is complicated: first the kernel image must be saved to the (local) filesystem,
then the kernel image must be installed for the boot manager, and the final step is to shutdown
the local system, releasing terminal connections from which the system was controlled remotely,
and finally the new kernel starts - or crashes. In this case, there is a lot work to reinstall an old
working kernel image.

➤ There is no possibility to reboot a machine with a new kernel directly over the network, to make
it easier developing kernel code.

➤ Distributed process execution is hard to realize and needs special extensions (libraries and pro-
grams).

➤ A UNIX system can only execute binaries supporting the target system and processor architec-
ture the kernel is running on.

➤ Implementing device drivers can be a complicated and time consuming task, especially for begin-
ners. Addtionally, the device driver interface of UNIX is file operation matched, and mostly not
very comfortable for non file and char stream based devices.

But there is a solution avoiding the above explained disadvanteges: the distributed operating system
Amoeba, originally a research project by the Vrije Universiteit in Amsterdam leaded by the well known
Prof. Andrew Tanenbaum and many other people developed this system. The roots gone back in the
year 1983, and the research project was canceled in the year 1996.
Concepts and advantages of the Amoeba operating system:

➤ The network communication is based on a specialized local network protocol called FLIP.
This protocol is optimized for fast and low latency communication. FLIP needs no explicit net-
work configuration and knowledge about the network topology. Instead, FLIP is able to find
routes automatically between communication nodes. In contrast to the TCP/IP protocol, FLIP is
connectionless.

➤ The Amoeba kernel based on micro kernel concepts, which makes the kernel more flexible
and adaptable than a monolithic one. In contrast to UNIX, the kernel needs no root filesystem on
startup. Instead, each kernel has it’s own RAM based directory system, mainly used for exporting
interfaces of the kernel device drivers and system services.

FUNDAMENTALS 5

➤ Unique object concepts: Files, directories, processes, hardware interfaces, memory segments
and many more are treated like unique objects with standardized access methods.

➤ All communication in the system is based on the server-client modell using either remote
procedure call (RPC) or group communication.

FUNDAMENTALS 6

Amoeba concepts Fundamentals

Amoeba forges all machines connected by a network to one distributed virtual machine. Machines of
this cluster can serve different tasks:

➤ File server,

➤ process server (with or without harddisk storage),

➤ graphical terminal (X11),

➤ IO server with spcial devices connected to the machine,

➤ universal job profile: a desktop workstation (with harddisk storage).

The network topology can be of an arbitrary form. There are no limits concerning the physical and
logical media:

➤ Ethernet: 10/100/1000 MBit/s, star or line architecture,

➤ Bussystems: VME, Myrinet,...,

➤ universal interfaces like the serial port, USB, FireWire, CAN-Bus, I 2 C and many more.

It’s possible to use more than one interface and network on each machine.

���� ����

�������
�

��

Processor-Pool

TerminalsSpecial Servers

(Fig. 3) Machines serving different tasks are connected by a network.

FUNDAMENTALS 7

Amoeba Communication Amoeba concepts

The amoeba operating system based on the client-server model. There are processes providing ser-
vices, called servers, and there are processes requesting services, called clients. The communication
between clients and servers is realized with a unique point-to-point communication using messages,
called remote procedure call (RPC). Beside common point-to-point communications, there is group
communication between processes joining a group.
The RPC message transfer is handled with a unique communication header and universal data buffers.
Communication with servers mean access of object resources of the contacted server. Amoeba handles
all resources with a common resource specifier: the capability.
Amoeba objects are:

1. Files managed by the Atomic File Server AFS outside the kernel,

2. directories managed by the Directory and Name Server DNS outside the kernel,

3. processes managed by the process server inside the kernel,

4. data memory space managed by the segment server inside the kernel,

5. hardware devices managed by various servers inside the kernel,

6. terminals (input & output) by the TTY server,

7. UNIX files by the UNIX emulation layer and many more.

In general, objects are an amount of capsulated data. Each object belongs to a server. The capability
specifies the server to which the object, for example a file, belongs to, and the access rights associated
with this object, for example read and write permissions for files.
Relating to the above shown list of object types, there are different kind of servers handling these ob-
jects:

1. The Atomic File Server AFS manages files in a very basic way. This server treats all files simply
as objects referenced by a number, not a name. There is no name mapping or structureing of
files. Additionally, the file data is handled with an atomic behaviour: a file is either valid or not.
After a file is marked valid, it must be exists entierly on the permanent data storage and can’t be
modified anymore! These files can only be read or deleted. Only not valid files can be modified.
The name mapping of file objects is handled by the

2. Directory and Name Server DNS. It maps object names to capabilities in a gernal way by using
a directory like structure method.
An indepth description can be found in section DNS: Name mapping of Amoeba Capabilities (P. 14) .

3. A boot server to start up, control and shutdown an Amoeba environment. Here, the managed
objects are booted programs, for example the file and directory server.

4. Several servers inside the VX-Kernel servicing low level resources.

Servers can be implemented both in kernel and user process space without changes. They use the
same RPC communication interface.

Standard Operations

AMOEBA CONCEPTS 8

Only certain operations for objects are defined by the server, for example creation of a file or a
memory segment. There are some standard operations which all server should support:

STD INFO
Get a short string which holds informations about the accessed object. With this string
its possible to identify objects, for example the info string of a directory starts with the
’/’ char.

STD STATUS
Get status informations about the server or the accessed object. In general this request
returns statistical informations, like the free and used space of a filesystem. The re-
turned string is server specific.

STD DESTROY
Destroy an already existing object, for exampel a file or a memory segment.

STD COPY
Make a copy of an object, for example a file, and return the capability of the new created
object.

STD RESTRICT
Request the server to restrict the rights of an object capability, for example making a file
readonly. This request returns a modified capability pointing to the same object like the
original one.

STD GETPARAMS
Server operation can be parameterized at runtime. This request returns all supported
parameter names and currently values of the server.

STD SETPARAMS
This request sets server parameters and is needed for system administration of servers
at runtime.

STD TOUCH
Each object has live time value managed by the server to which the object belongs. This
request sets the live time to the server internal maximal value. This is one requested
needed to implement garbage collection, that means periodical removal of unused server
objects.

STD AGE
Decrease the livetime of all known object of the server by one. All objects with livetime
zero will be destroyed by the server upon this call. These are objects which were never
touched.

STD EXIT
Shutdown a server in a clean way.

Remote Procedure Call

The RPC communication under Amoeba needs only three operations to perform a synchronously
message transfer from the client to the server with a final returned reply by the server:

1. Server message request operation getreq(hdr,buf,sz)
2. Client transaction operation trans(hdr1,buf1,sz1,hdr2,buf2,sz)
3. Server message reply operation putrep(hdr,buf,sz)

Each communication primitive needs a header which holds informations about the destination of
the message using parts from the capability structure. Additonally, in the client-to-server direc-

AMOEBA CONCEPTS 9

tion there are informations about the request command and the accessed object, and the reply
header holds informations about the status (success) of the requested operation. The message
data to be transfered (from client to server and vice versa) is stored in a universal databuffer of
specified size. The maximal size of the databuffer is limited to 4 GByte. Because the communi-
cation header holds some entries for universal usage, the databuffer can be empty and only the
header will be transferred.
The general format of the communication header is shown below.

Communication header
1 2 3 4 5 6 7 8
Server Port Signature
Signature Private Port
Private Port Command
User1 User2 User3

Figure 4 shows a typical sequence of client-server communication. The clients sends a message
to the server and gets finally a reply message from the server (not shown).

CLIENT SERVER

 tran(pub-port) getreq(prv-port)

KERNELKERNEL

 F(prv-port)
Network

(Fig. 4) A typcial sequence happening on RPC messaging.

Each server listening for RPC messages has a unique port address specifying the server com-
munication endpoint. This port must be public available. To avoid server masquerading, this
port address is not published directly. Instead, the server publishes a port address calculated by
a one-way function F of his private port, called public port. Each time a message arrives, the
public port in the message header is compared with entries in a server table holding this public
port and a pointer to the server waiting for messages of this address. The server always calls
the getreq function with his private port. The client transaction function uses only the public
version. Servers trying to get messages on the public port address will therefore never get a
message destinated to the public port.
There is no difference between local and remote communication. In both cases, the RPC primi-
tives can be used. Moreover, the use of this primitives must not know details about the location
of a server, in contrast to IP based communication under UNIX.
To make server request more comfortable, there are various so called server stub routines, each
performing a special command on a server (object) specified by a capability.

AMOEBA CONCEPTS 10

Network protocol FLIP

The RPC messaging and group communication primitives are built upon the Fast Local Intranet
Protocol Stack, called FLIP. FLIP implements connectionless communication between commu-
nication endpoints with the following features:

➤ Communication endpoints are processes, not machines,
➤ they are identified by 64-Bit IDs, so called Network Servive Access Points (NSAP),
➤ the ID is unique,
➤ the ID is independent of the location of the process.

Each Amoeba process keeps his unique communication endpoint identifier, as well the process
migrates to another machine!
FLIP has the following advantages and features:

➤ optimized for low latency and high data throughput rates,
➤ independent of the network topology and the used physical transmission lines,
➤ and it’s simultaneous a network package router,
➤ FLIP is a reliable and connectionless message protocol,
➤ both point-to-point and muclticast transfer (group communication) is possible,
➤ FLIP adapts dynamically and automatically to network topology.

Routing takes place

➤ between different networks,
➤ between different physical medias,
➤ and the best route will be automatically determined (latency ⊗ data rate).

Each higher level messaging system (RPC/GROUP) is treated by FLIP as another network.
Therefore, a FLIP box always performs routing between networks for delivering messages. Fig-
ure 5 explains this relationship.

AMOEBA CONCEPTS 11

HOST

HOST-Interface

Packet-Switch

NETWORK-Interface

Ethernet VME-Bus

DECT-COM

FLIP-Box

RPC
GRP

(Fig. 5) Details of a FLIP box.

Each FLIP box contains a packet switch with a routing table, but known routes are not binding.
Is a destination not reachable, the FLIP box tries to locate a destination again, perhaps using
other routes. Networks will be weighted by their power and the best connection is choosen for
message passing.
More details about the FLIP protocol can be found in section FLIP (P. 42) covering results from
the original authors.

AMOEBA CONCEPTS 12

Amoeba objects and capabilities Amoeba concepts

As mentioned in the previous section, server resources are specfied with capabilities. A capability
therefore holds the server port and additional informations about the object. The following graphic
shows the structure of a capability:

Object Capability

Port Object Rights Private
P1:P2:P3:P4:P5:P6 obj <rgts> S1:S2:S3:S4:S5:S6

The entries have the following meanings:

P
The public server port (6 bytes),

obj
the object number specified by the server (4 bytes). It’s a unqiue server internal identification
number of this object,

<rtgs>
the rights mask (1 byte) determines the allowed access rights of an object, like the permis-
sion to destroy an object. Each bit in the rights field specfies one possible access right. The
meaning of each bit is really dependent of the server and the kind of the object.

S
and finally the security private port (6 bytes). This port protects the rights field against
manipulation.

The rights protection port contains the rights field. This is done by a one-way encoding function f
using a private check port C randomly created by the server only for this object and the rights field.
A restricted capability CAP’ is built from an original one by restricting the rights field and creating
a new security port using the prv encode function. This function simply calculates the new security
port S’ from the private checkport C and the rights field R using a logical XOR operation and feeds the
result to a one-way function F, as shown in equation 1.

S′ = F(S XOR R) (1)

Each time a server receives a message it checks the security port using his private check port C and
the prv decode function. This function simply builts the expected security port S’ from the rights field
specified in the received capability and the checkport C and compares S’ with the supplied S port. If
they are not equal, the capability was manipulated and will be rejected.
Capabilities can be reperesented in text form in the format shown above (server port, object number,
rights, private protection port):

6a:c2:f8:8e:96:c0/1(ff)/5e:85:33:98:27:de

AMOEBA CONCEPTS 13

DNS: Name mapping of Amoeba Capabilities Amoeba concepts

The previously shown capabilities are always needed for requesting services and handling Amoeba
objects. But they are not a human friendly way to handle Objects. Therefore, some kind of a name-to-
capability mapping is needed. This is performed by the Directory- and Name Service (DNS):

➤ The DNS is build from directories with a definite number of entries, called rows,

➤ each row entry maps a user specified name string to a pair of capabilities, but normally only one
capability entry is used (the other is used for a replicated version of an object, serviced by another
server for redundancy),

➤ additionally to the row name mapping, there are so called columns in each row, which determine
objects rights,

➤ the DNS directory is managed by a dedicated server independent from file servers,

➤ each directory is handled standalone, that means, there is no parent directory feature in the
DNS,

➤ and finally each directory has it’s own capability, like any other object in Amoeba.

Figure 6 shows an example DNS structure configuration.

/
6a:c2:f8:8e:96:c0/1(ff)/5e:85:33:98:27:de

hosts
6a:c2:f8:8e:96:c0/3(ff)/69:6b:53:4c:7a:49

6a:c2:f8:8e:96:c0/3(ff)/69:6b:53:4c:7a:49
bin

6a:c2:f8:8e:96:c0/5(ff)/96:cf:3:8:f8:68
server

7c:d2:8:af:c3:7f/0(ff)/63:13:f9:6c:6:a2
afs

6a:c2:f8:8e:96:c0/0(ff)/3a:96:82:e1:3a:ba
dns

e9:57:80:25:ef:17/0(ff)/90:7f:2a:2a:5d:8
boot

ROW 0

ROW 1

ROW 2

ROW 0

ROW 1

ROW 2

(Fig. 6) An example for a directory structure in Amoeba.

AMOEBA CONCEPTS 14

Because each directory in the DNS is handled standalone, each directory can be a new root directory
for a user, not only the directory named ”/”.
There are variuous library routines which make teh access of the DNS service comfortable, like the
name module:

name lookup("/server/dns") →
cap ≡ 6a:c2:f8:8e:96:c0/1(ff)/5e:85:33:98:27:de

std info (cap ≡ 6a:c2:f8:8e:96:c0/1(ff)/5e:85:33:98:27:de) →
"DNS server capability"

The way object rights are determined (that means the operations and requests allowed with this par-
ticular object) is different from UNIX like operating systems. A typical Amoeba directory may look
like:

Directory content ”/”

Name Capability-Set Col1 Col2 Col3
hosts C1,C2,C3 1111 0001 0000
bin C1,C2,C3 1111 0001 0000
server C1,C2,C3 1111 0000 0000

Here, the three rights columns (with only four bits shown) of the DNS server have the symbolic names:
”Owner”, ”Group”, ”Others”. If a directory is accessed, the (first three) bit of the rights field from the
supplied user capability determines the access rights to each column of a row. The first bit corresponds
th Col1 with capability C1, the second to Col2 with capabilty C2, the third to Col3 and the C3 capa-
bility. This is a convention by the DNS server, and not a general method for rights handled by other
kinds of server, but more than three rows with different meanings can be implemented using DNS.
Each column represents therefore a (rights restricted) capability of the object with the rights specified
in the particular column.
Now suppose, a user want to access the entry ”bin” in this directory. In the first case, he owns the
unrestricted capability of this directory (all rights bits are set, here ”0xff”):

6a:c2:f8:8e:96:c0/1(ff)/5e:85:33:98:27:de

First the DNS server will lookup the appropiate row specfied by the requested name. Next, the column
is checked against the bit map in the user supplied rights field, to see which column(s) should be used.
All the columns rights from the current row are logical ored, if, and only if the i-th bit in the current
rights field is set. The i-th bit corresponds to the i-th rights column in the current row:

have rights = 0
for all columns in row
do

if bit i in rights is set
then have rights = have rights lor col[i]

done

AMOEBA CONCEPTS 15

With the unrestricted rights field (111) we get a capability with rights (...1111):

6a:c2:f8:8e:96:c0/3(ff)/69:6b:53:4c:7a:49

Now, the user has only a restricted version of the directory capability:

6a:c2:f8:8e:96:c0/1(2)/1e:45:aa:81:16:ae

This leads to another calculation of the capability rights (here 0001) and another restricted capability
of the directory ”bin”:

6a:c2:f8:8e:96:c0/3(1)/1a:23:17:94:45:91

You see that all capabilities have the same server port and object number, but different rights leads
to different private security ports which contain the rights coded with the already explained cryptho-
graphic scheme.

AMOEBA CONCEPTS 16

VX-Kernel Fundamentals

The VX-Kernel is derived from the original Vrije-Amoeba kernel and it is a native Amoeba execution
platform with its own set of device drivers and low level resource management. The VX-Kernel is used
by the VAMRAW system, providing virtual machine concepts and functional programming on the top
of this kernel.
The kernel has the following features and avtanges:

➤ it’s a micro kernel (with some advantages of a monolithic kernel like a simplified boot operation
and core device drivers inside the kernel), and can be extended and scaled to customized designs,

➤ it supports true multiprocess execution in a protected user process environment and multithread-
ing, both inside the kernel and user proceeses,

➤ the kernel has full control about low level process and thread management,

➤ device drivers either built in the kernel or executing outside the kernel as normal protected
processes,

➤ segment based memory management with low level architecture dependent page protection,
which protects processes against each other, which protects the kernel against process memory
violations (which leads to process abort), and finally, protects processes against kernel memory
protection violations (which leads to kernel abort),

➤ the kernel has a two-level priority based process and thread scheduler, but inside the kernel
threads are non preemptive scheduled,

➤ the thread and rpc programming interface is the same both inside and outside the kernel,

➤ a restricted version of the Amoeba core library is available inside the kernel,

➤ the kernel supports different communication facilities: the common RPC interface (for both local
and remote message transfers) and a specialized local process interface IPC, similar to RPC, but
with enhanced performance,

➤ to enable high performance local and remote interprocess communciation, the FLIP protocol
stack is part of the kernel.

Figure 7 gives an overview of all the components inside the kernel. Most of them are necessary for a
fully functional kernel.
Each kernel has its own internal and pure memory based directory and name service DNS. Only
a small part of system access takes places using the kernel system call interface, a direct path to the
kernel simply calling a system function. In contrast to monolithic operating systems like UNIX most
of the system access like rading files is implemeneted with message passing. The remaining system
calls of the VX-Kernel are used for:

➤ low level thread and process management,

➤ low level memory management,

➤ user space device driver support (like user process interrupts),

➤ and finally the few functions (getreq,putrep,trans) of the RPC message interface (additionally the
group communication interface).

FUNDAMENTALS 17

Kernel DNS

Server

RandomTerminalProcess

SystemVirtual DiskTime

IPCSerial PortParallel Port

FLIP RPC

GROUP

Communication

Threads Processes

Scheduler

Memory Management

Ressource Management

PCIInterruptsIO Ports

Device Memory

Interrupt Management

Device Drivers

SCSI DisksIDE DisksEthernet

DisplayParallel PortSerial Port

MemoryCPUKeyboard

(Fig. 7) Overview of the VX-Kernel structure.

The servers inside the kernel managing the system resources are requested with remote procedure
calls, like all other servers in the Amoeba system running in the user process context. But, its not
necessary to have a local filesystem supported by the kernel. Therefore, all kernel servers publish
their public server capability in the kernel DNS. Most server generate their server port randomly on
kernel startup, except disk servers. They save their server port on the disk they are using, but only if
an Amoeba fielsystem is located on the disk.
The different servers inside the kernel are:

1. The system server (sys) provides generic system informations (kernel statistics) and system
services like the reboot feature,

2. the virtual disk server (vdisk) providing a unique access to storage devices, used by higher
level filesystem servers like AFS,

3. time and random number services (tod,random),

4. a low level process server (proc), which publishs the process capabilities in a special directory
called ”ps”,

5. and many device drivers like the terminal server (keyborad, display: TTY), parallel and serial
port and many more.

FUNDAMENTALS 18

Below the server and device driver layer there is the heart of kernel loacted: the hard- and software
resource management (slightly distributed over several parts of the kernel). The following main re-
sources are handled:

IO
Hadrware IO ports of machine devices

IRQ
Interrupts of hardware devices. The same interrupt level may me shared between several
devices.

VMEM
Virtual memory. Each process (inclusive the kernel) has its own virtual address space. But
in contrast to most monolithic systems there is no swapping of virtual memory parts to a
secondary storage media. This limitation results from first the overhead needed, second
the fact, that RAM memory is today available in amounts sufficient for most applications,
and finally third the communication system performance decreases with outsourced memory
parts considerable.

PMEM
Physical memory management with access protection features.

PCI
Special bus systems resources like the PCI bus (memory, interrupts, IO ports) need configu-
ration and management.

High level Interrupt management is different for device drivers inside and outside the kernel.
Within the kernel, the device drivers simply provides a function and installs it as an interrupt han-
dler. If the hardware interrupt was triggered, the kernel will call the device driver interrupt handler
function directly. But the process context of such an interrupt handler depends on the current execut-
ing process! The interrupt handler function can for example overflow the stack of the current process
(thread).
Outside the kernel, in user processes, there is another solution. The device driver starts a thread ser-
vicing the desired interrupt. This thread must register the interrupt and waits for the interrupt event
calling a special interrupt await function blocking the thread untill the interrupt occurs. If the inter-
rupt was triggered, the kernel will wakeup this thread, and the device driver can service the interrupt.
These interrupt handlers always execute in their own process context, which make the interrupt ser-
vice much more safety.
Another important part of the kernel is the time(r) management. In contrast to traditional kernels
has the VX-Kernel a dynamically timer management, that means there is no fixed time unit (ticks).
The two jobs of the kernel timer management are:

1. periodically call user supllied timer functions,

2. and handling of thread and process timeouts.

The internal (theoretical) time resolution is about one microsecond. The shortest time intervall needed
is determined dynamically on demand. The timer management is hardware interrupt controlled. Af-
ter a programmable hardware timer triggers an interrupt because the programmed time interval T
expired, the timer manager timer run will be called and thread, process and user function timeouts Ti

= Ti - T will be calculated. Functions ready to run (timeout Ti < 0 reached) will be executed. Finally, a
new timer intervall T (of the timer manager itself) will be calculated and programmed into the hard-
ware timer. The timer manager is weaved with the scheduler (for thread and process timeouts).
The thread management module in the VX-Kernel was fully revised and differs interally from the

FUNDAMENTALS 19

orginal Amoeba kernel, but the programming interface kept nearly unchanged, except some enhance-
ments for therad creation.
A process consists initially of one thread, the main thread. Each process, the kernel is terated like a
process, can start new threads. Each threads has its own stack. Figure ?? shows a typical situation.

Process 1

Kernel

Process 2

Scheduler

1 2 2 3 2

1 2 2 2 2 3

(Fig. 8) Thread and processes in the VX-Kernel with different priorities.

The thread and process scheduling is based on a two-level proirity scheme:

1. Each thread of a process has a thread priority TPRIO which can have the three different values:
TPRIO={HIGH,NORM,LOW}
The thread priority has a process local context, that means that each process can choose his
thread priorities without limitations.

2. Each process has a process prioritry PPRIO which can have thre different values, too:
PPRIO={HIGH,NORM,LOW}
The process priority has a higher weight than the thread priority.

Kernel threads are scheduled strictly non preemptive, but priority selected. User process threads can
be scheduled either preemptive or non preemptive (the default setting). A kernel thread run as long as
it calls a function which blocks the execution of the thread (trans, await, thread switch...). User pro-
cesses are scheduled preemptive with a time slice. If a process has consumed his time slice, another
process (by priority) is selected. The kernel process has the highest priority HIGH.
The memory of a process (and the kernel) is structured by segments. A process has at least three
memory segments:

FUNDAMENTALS 20

1. The textsegment (readonly RO) which holds the program code and constant data of a program
like strings,

2. at least on data segment (with read&write rights RW),

3. and at least one stack segment (RW).

All the memory segments are handled by the segment manager as part of the system server. Each pro-
cess can allocate more memory segments, for example using the malloc function, which request a new
data segment from the segment server (via a system call). Each new created thread gets his own stack
segment. Figure 9 shows the usage of memory segments. Memory segment can be shared between
processes executing on the same machine. One common example is the text segment of a process.

User Process 1

 Kernelprocess

User Process 2

 Memory-
 segments

(Fig. 9) Memory segments used by processes and the kernel.

To synchronize the runtime behaviour of different threads inside of one process, there are different
mechanisms:

➤ With Mutual Exclusions (Mutex) shared data structures can be protected against uncontrolled
shared access,

➤ with semaphores a producer-consumer algorithm can be implemented,

➤ barriers can synchronize the execution of several threads,

➤ signals can be used to communicate between different threads of a process,

➤ and an await-wakeup implementation is used for the simplest interthread synchronization.

FUNDAMENTALS 21

Process synchronization takes place with:

➤ Remote Procedure Calls RPC, both for the local and remote case,

➤ and local interprocess communication IPC, normally only used by devicde drivers outside the
kernel.

Each Amoeba process is handled with a so called process descriptor. This is data structure which
contains the following informations:

1. The processor and machine architecture for which this process binary was compiled,

2. an owner capability,

3. a list of memory segments (at least the text segment),

4. a list of threads currently executing with additional informations about the thread state.

The segment descriptor holds these informations:

1. The segment capability (specifying the owner of the segment),

2. the start address and size,

3. status flags of a segment (RO/RW/SHARED...).

Finally the thread descriptor holds informations about the current state of each thread of a process:

1. The program counter IP,

2. the stack pointer SP,

3. processor register copy,

4. flags and signals,

5. and finally architecture dependent data, for example a fault frame after an exception was raised.

The process descriptor is part of each program binary file with informations about the text, initialized
and uninitialized datasegments, and the main stack segment. The owner of these segments stored in
the binary is the fileserver untill the process was started.
A process is started by another process (or the kernel for booting) simply by calling a process execu-
tion function with the process descriptor read from the binary file. The process creator will be the
owner of the new started process. The stack segment, which need to be initialized with the process
environment, like environment capabilities and strings, is created using Amoebas fileserver, simply by
creating a new temporaryly file. This must be done by the process creator. So, the low level process
server reads all segments content for the new process from the fileserver, just by examining the seg-
ment descriptors and extracting the owner capabilities.
A running process can be dumped together with his process descriptor to an imagefile and be restarted
on another machine simply calling the process execution function again with the current process de-
scriptor.

FUNDAMENTALS 22

The process environment, committed to a new process by his stack segment, contains the following
informations:

1. program arguments supplied by the user,

2. standard capabilities:

➤ TTY: terminal server for standard output and input,
➤ RANDOM: random generator server,
➤ TOD: time server,
➤ ROOT: the capability of the root directory for accessing files and directories.

3. string variables, like the terminal type TERM.

The FLIP protocol stack was fully revised and split in an operating system dependent and an inde-
pendent part. Most of the source code is now fully operating system independent and is shared in the
kernel and the AMUNIX implementation.

FUNDAMENTALS 23

AMUNIX Fundamentals

The AMUNIX system provides the interface to the basic Amoeba concepts like RPC messaging on the
top of UNIX like operating systems, for example the open source Linux and FreeBSD operating sys-
tems. It consists of these parts:

1. An UNIX version of the Amoeba thread module called AMUTHR enabling multithreading nor-
mally not a core part of a UNIX operating system. The AMUTHR module is entirely implemented
in UNIX user process space and nearly 100% compatible to the Amoeba kernel thread implemen-
tation. The Amoeba thread implementation is weaved with the FLIP protocol stack.

2. The AMUNIX library implementing Amoebas basic concepts like capability management or the
RPC interface, several server stib functions and many more. It’s mostly derived from the native
Amoeba core library.

3. The FLIPD protocol stack daemon entirely executing in the UNIX user process domain provid-
ing access of AMUNIX programs to the (Amoeba) network using the FLIP protocol. The FLIPD
is also responsible for loacl communication between Amoeba programs.

4. A comfortable development environment with predefined makefiles for the Amoeba configu-
ration manager amake similar to UNIX make. With this development environement it’s possible
to built libraries and Amoeba executables from C source code.

Figure 10 gives an overview and the relationship between these parts.

AMUTHR

UNIX

NIC Hardware

LIBC

FLIPD

AMUNIX

AMUTHR

LIBC

AMUNIX

Userspace

Kernelspace

Socket
Network

APPLICATION

(Fig. 10) AMUNIX: the Amoeba layer on the top of UNIX.

Each AMUNIX executable incorporates the underlying UNIX system, glued in the system C library.
On the top of this system library, the AMUTHR module was placed to enable multithreading. Each
AMUNIX process has it’s own encapsulated thread management responsible only for this
process. This mechanism differs from the native Amoeba system (VX-Kernel) where all processes
share the same thread manger inside the kernel. The interface to the Amoeba world is provided by the

FUNDAMENTALS 24

AMUNIX layer.
The AMUTHR thread module is nearly identical to theVX- kernel thread implementation. Yes, indead,
the source code from the kernel were used nearly unchanged. A thread switch is performed by a small
function written in Assembler, consisting of less than 10 lines of code. Only the stack and program
code pointers must be changed during a thread switch.
The AMUNIX library differs from the native Amoeba core library only in the thread and the commu-
nication backend. Under native Amoeba with the protocol stack inside the kernel, the communication
backend (RPC...) is implemented simply with kernel system calls. Under AMUNIX, a UNIX like com-
munication must be established to the FLIPD daemon, an AMUNIX process, too. The communication
between AMUNIX processes and the FLIP daemon is realized with generic UNIX sockets.
Using the AMUNIX layer, nearly all Amoeba programs known from the native System can be build
for the AMUNIX environment. The programming interface kept unchanged including C header files.
Only different libraries must be linked with the AMUNIX executable. And finally, an AMUNIX pro-
gram can be started from any UNIX shell or forked by another UNIX program.
The first time an AMUNIX thread want to use the RPC interface (e.g. with a trans() call), the AMU-
NIX layer will try to connect to the FLIP daemon via a public UNIX control socket. After successfull
connect, the FLIP daemon will establish a new private communication socket only for this particular
thread. Additionally for RPC signal transmission, a dedicated signal socket connection is opened if
this is the first thread of the process. Each AMUNIX process thread (using RPC) is handled by the
FLIPD daemon with an own process thread.
Each AMUNIX process (like a native Amoeba process) must be registered by the FLIP protocol stack.
Each Amoeba process gets an unique communication endpoint identifier. As long as the process lives,
it keeps this ID number, as well the process migrates to another machine!
Figure 11 shows details of the FLIP daemon operation with AMUNIX processes.

AMUTHR

LIBC

FLIP OS dependent
AMUNIX

AMUTHR

LIBC

AMUNIX
APPLICATION

THR 1 THR 1

THR 2THR 2

THR 3

AMUTHR

LIBC

AMUNIX
APPLICATION

THR 1

FLIP OS independent

Signals

(Fig. 11) The UNIX implementation of Amoebas FLIP protocol stack in the UNIX user
process space.

The network interface of the FLIP daemon needs direct access to the network layer of the underlying
operating system to receive and send raw ethernet packets. Therefore FLIPD is connected to the UNIX
kernel using some kind of sockets, too. This is the only host system dependent part of the FLIP daemon
program. Under Linux, so called raw sockets, and under FreeBSD the packet filter interface is used
to connect FLIP to the network. The rest of the FLIP source code (both for the native VX-Kernel and
AMUNIX implementation) is operating system independent.

FUNDAMENTALS 25

VAM - the functional approach Fundamentals

The short name VAM is the abbreviation for the Virtual Amoeba Machine. The concepts of a na-
tive Amoeba system running with its own kernel and the AMUNIX Amoeba emulation as an addon
for UNIX operating systems have many advantages. But there are some important disadvantages of
these traditional concepts:

1. All parts of the kernel, the library and user space programs are programmed in the C language.
C is a powerfull lowlevel language, but it lacks of safety and the ability of abstraction. There are
too many risks of failures, mostly related with the always visible pointer handling. Moreover, the
programmers spent a lot of time and power with resource management, like memory space for
data structures.

2. C programs are compiled and linked for the native microprocessor code only. This is no prob-
lem for the (of course portable) VX-Kernel, currently only supporting the i386 architecture. But
the AMUNIX emulation should run on various different operating systems and microprocessors.
For n different operating systems and m hardware architectures, youn need n∗m builds of the
AMUNIX system, all the libraries and util programs, the flip protocol stack and so on.

Some disadvantages can be eliminated with new and modern concepts of functional programming
instead using memory pointer based languages like C with a high probability to cause unresolved
errors in the program code during program execution somewhere in time and space. The authors ex-
periences showed in the past, that programming errors due to wrong pointer handling can occur years
(!!!) after the program was written. These class of programming errors are really hard to find out,
because wrong pointer handling causes normally no exception directly. Instead, some part of the pro-
gram memory will be corrupted. This will cause a fully undefined program behaviour with program
aborts in parts of the program not related to the original pointer corruption. More than 90% of the C
code in the world is infected by pointer corruption and executes in an undefined way.
Functional programming, especial the ML programming language, features a strong typed data
system which avoids several common programming errors, like integers of different binary widths
which can cause unpredictable program output. Moreover, ML provides the programmer with an au-
tomatic resource management. There is no memory pointer code needed (and of course allowed) to
program an algorithm. True functional code has a predictable runtime behaviour.
In contrast to the machine C language the ML languages provides the programmer with some kind
of abstraction facilities. Functional programming is a style that uses the defintion and application of
functions as essential concepts [COU98]. In this approach, variables play the same role as in mathe-
matics: they are the symbolic representation of values and, in particular, serve as the parameters of
functions.
In imperative programming languages like C there are some parasites: each function must be intro-
duced with an arbitrary name F. In those languages, we cannot define a function without naming it
and there is an explicit assignment operation, like the return operation. Using imperative languages,
the user must provide the compiler with the type of functions or variables. In contrast, in functional
programming the compiler is responsible to find out types of functions and variables (or data struc-
tures)! Types exist in ML, too, though they are computed by the system.
A functional style tends to preserve the simplicity and spirit of mathematical notation. Because func-
tions can be denoted by expressions, function values can be treated as values just like all others and
therefore functional values can be passed as argumentes to and returned by other functions.
For reasons explained below, the OCaML programming language from INRIA software institute
was choosen for implementing the VAM system. OCaML is a kind of ML language, but not fully
compatible to standard ML. It provides a ML core with a powerfull and easy to use module system.
Additionally, it has an object orientated class system built on the top of the ML core.
To illustrate the power of functional programming, lets make an example:

FUNDAMENTALS 26

fun x → 2 ∗ x + 1

This is simply an expression for a mathematical function. Using C, we need to write instead:

int F(int x) {
return (2 ∗x+1);

}

A named function value, for example ”f”, can be expressed with the let operator:

let f x = 2 ∗ x + 1

The ML compiler will compile this expression and a result is the following derived type interface:

val f : int → int

You can see, that there is no necessatiy of a type declaration if you define a (functional) value. The
compiler will evaluate the expression and finds out that the multiplication and addition operator is
from type integer (int), and therefore the function argument and the result of the function must be
from type integer, too.
The fact that the ML language treats functions as generic functional values like normal ”variable”
values can clearly shown by the next two examples:

let f x = x + 1
val f : int → int
let x = 2
val x : int

Here, the first line defines a function expecting one argument, and the second definition just defines a
symbolic variable (not mutable) from type integer. This value just returns a constant.
Another powerfull of ML is polymorphism. That means, the compiler can’t evaluate one or more
types of functional values inclusive the return value of a fucntion. This leads to a powerfull and
mighty instrument for reuseable code. For example a function which iterates a list entry by entry and
passes each list entry to a user supplied function which make some nice things with this list entry:

let rec list iter func list =
match list with
| hd::tl → func hd; list iter func tl;
| [] → ();

;;

val list iter : (’a → ’b) → ’a list → unit = <fun >

FUNDAMENTALS 27

The interface derived by the compiler specifies no concrete type. The only fact we know is that the
first argument must be a function wich expects as the first argument a list entry from same type as
specified in the second list argument ’a list . The native lists supported by ML are simple single
linked linear lists. Lists can hold data of arbitrary types. The :: operator in the match statemant,
compareable with the switch/case statemant in C, splits the list into a single value, the head of the list,
and a remaining tail list. The [] operator is the empty list. The last example showed one more feature
of the ML language: function recursion.
Another kind of data type leads to a more strcutured programming style: tuples. These are simply spo-
ken unnamed compounds of arbitrary data types and entries. Lets assume you want to return more
than one value from a function. In C you must use several pointers passed to the function with its
arguments. But clearly, function arguments should of type input, not of type output. Using ML, there
is a solution, called data tuples. The following example shows this powerfull feature, with a function
expecting to arguments of type integer, and returns a tuple of thre integers:

let arithm x y =
let mul = x ∗ y in
let div = x / y in
let add = x + y in
(mul,div,add)

;;
val arithm : int → int → int ∗ int ∗ int = <fun >

A final example shows the usage of the above defined polymorph function list iter:

let list = [1;2;3] ;;
val list : int list = [1; 2; 3]

let sum = ref 0 ;;
val sum : int ref = {contents = 0}

list iter (fun x → sum : = !sum + x) list ;;
print int !sum
6

The first line defines a list with three entries from type integer. The second one defines a traditional
variable known from imperative programming languages. This imperative variable is mutable, as
shown in the nameless function in the list iter function evaluation call. The ”!” operator just returns
the current value of this variable, and the ”:=” operator assign a new value to the variable. But in fact
this is not a traditional variable, it’s a reference to an object. Each time a new value is assigned to this
reference, this reference points to a new object! In the above example it’s just the result of the addition
of two values - a constant in this case.
But back to the motivations for using functional programming for the extensive job of operating system
programming. As shown above in various examples, the programmer spent his time with imple-
menting an algorithm, and not with resource allocation and release, like in imperative languages
like C. This make especial rapid prototyping more faster and safe. This can lead to a more clean
and structured programming style. In CaML there are references, too. But they must point always
to valid objects. There is no nil pointer like in C. And therefore memory access violations due to nil
pointers are not possible. This reduces the time spent in the job of programming of about thousand of
hours, really belive it.
But that’s not all, folks. The OCaML language has one more powerfull feature: the ML compiler

FUNDAMENTALS 28

doesn’t produce native assembler code directly executed by the host machine, no, it produces architec-
ture and machine independent code, called bytecode. This bytecode is then interpreted by a virtual
machine , emulating an abstract and in the case of OCaML nearly perfect and to the ML language
highly adpated execution machine. This virtual machine hides all system dependencies from the un-
derlying host operating system. This feature is perfectly suited for the implementation of a portable
operating system environment !
The OCaML virtual machine is a traditional stack based bytecode processor with memory allocation
and delayed freeing of no more needed memory by a background garbage collector. Experiencences
showd that an algorithm executing with OCaML using the virtual machine approach is only about
4-5 times slower in execution time than an optimized C program. The required memory space is hard
to predict, perhaps in contrast to C programs. It can be of course higher than by a compareable C
program. So, for embedded microcontrollers with hard resource constraints, the C language is mostly
the better choice.
Now, with the functional approach in mind, it seems to be a simple task to implement distributed
operating system concepts using the OCaML VM and the ML language. Indeed, the original OCaML
virtual machine is highly portable. The virtual machine consists of these main parts:

1. The bytecode interpreter with a stack based CISC machine architecture. It’s mainly one C func-
tion unrolling all the bytecode instructions (about 140 instructions),

2. several hardcoded ML standard function groups: Arrays, Lists, Strings, Integers, Floats...,

3. support for custom datastructures not interpreted by the VM (handled in external fucntions),

4. the memory manager and the garbage collector,

5. some system dependent parts (the Unix and System module),

6. IO handling (terminal and file input & output),

7. backtracing and debugger support.

One result of the functional approach of ML is that functional values can be evaluated independently.
This offers a great advantage for interactive toplevel systems. OCaML is equipped with an interactive
interpreter system. You can either type instructions on the input line, or read input from a file. This
text input is compiled (evaluated) to bytecode and can be immediately executed. These on the fly com-
piled code executes with the same runtime behaviour than traditional bytecode externally compiled
directly using the compiler.
The OCaML system, both the virtual machine and the runtime system (VM) , was adapted to the de-
mands of the Amoeba operating system concepts. The VM was improved, and the bytecode compiler
gots some enhancements.
One main feature of the OCaML virtual machine is a simple interface of user customized C functions
accessible from ML code. For example a function allocating a new Amoeba port is implemented in an
external C function:

CAMLexport value ext port new (value unit)
{

CAMLparam0();
CAMLlocal1(port v);
CAMLlocal1(port s);
port v = alloc tuple(1);
port s = alloc string(PORTSIZE);
memset(String val(port s),0,PORTSIZE);
Store field(port v,0,port s);

FUNDAMENTALS 29

CAMLreturn(port v);
}

The ML code, which tells the compiler that the function is external, is now very simple:

type port = Port of string (∗ length = PORTSIZE ∗)
external port new: unit → port = "ext port new"

Each time the port new ML function is called, the virtual machine will call the ext port new C function.
The virtual machine is implemented only with a library and a main source code file created dynami-
cally. Therefore, the virtual machine can be recompiled any time with additional functionality. This
feature was an important starting point for VAM.
Most of the Amoeba modules known from the C world were reimplemented with ML. Only a small part
is linked inside the virtual machine, namely the AMUNIX interface for threads and RPC communica-
tion. All other parts are created from pure ML source.
The basic concepts of the VAM system are shown in figure12.

VAM

Distributed
Operating
System
Amoeba

Functional
Programming

OCaML

Virtual
Machine
Environment

Bytecode
Programs

(Fig. 12) The basic conecpts of the virtual amoeba machine.

The VAM system is divided into a development and a runtime environment. The development envri-
onmnet provides the following parts:

1. Several ML libraries with different modules implementing the ML core concepts, the interface
to the UNIX environment, the Amoeba system, building the largest part, and a graphical
widget library.

FUNDAMENTALS 30

2. A standalone ML Bytecode compiler producing bytecode exectubales. Additionally, this com-
piler can compile a new custom designed virtual machine. The bytecode compiler is completely
programmed in ML, too.

3. An interactive toplevel VAM program. This program, simply called vam, contains the bytecode
compiler, a command line like toplevel shell for user interaction, and all ML Modules. With this
interactive system it’s possible to compile expressions directly entered into the command line or
load external ML scripts, compiled on the fly, too. This on the fly compiled bytecode is linked
to the current bytecode program during runtime and can be executed like any other built in
function.

The following list (in alphabetic order) gives an overview of currently implemented VAM modules.
Some modules were provided by external programmers. They were modified and adapted to VAM.

➤ Afs client - Client interface to the Amoeba Filesystem Server (AfS).

➤ Afs cache - a data cache implementation used by both the AFS and DNS server.

➤ Afs common - types and structures common to server and client.

➤ Afs server - core of the AFS server.

➤ Afs server rpc - the RPC server loop.

➤ Amoeba - the Amoeba core library implementing basic concepts like capabilities.

➤ Ar - ASCII representation of Amoeba structures like capabilities.

➤ Arg - Parsing of command line arguments. [OCAML305]

➤ Array - Array operations. [OCAML305]

➤ Bootdir - support for Amoebas bootdirectory system.

➤ Bootdisk common - Kernel Boot directory and disk module server implementation. This server
module emulates a DNS/AFS interface for the kernel boot partition holding kernels, binaries
needed for bootstrap purposes and configuation files with a very simple filesystem.

➤ Bootdisk server - the core module of the server.

➤ Bootdisk server rpc - the RPC server loop.

➤ Bstream - Generic Bytestream interface

➤ Buf - Provides machine independent storing and extracting of Amoeba structures in and from
buffers with bound checking.

➤ Buffer - Extensible buffers. [OCAML305]

➤ Bytebuf - Low level Buffer management. Used for example by the Rpc module.

➤ Cache - Provides a fixed table cache.

➤ Callback - Registering Caml values with the C runtime for later callbacks. [OCAML305]

➤ Cap env - support for Amoebas capability environment, similar to UNIX string environment.

➤ Capset - capability sets

➤ Circbuf - Support for circular Amoeba buffers with builtin synchronization primitves needed in
a multithreaded program environment.

FUNDAMENTALS 31

➤ Char - Character operations. [OCAML305]

➤ Db - debug support.

➤ Dblist - double linked lists.

➤ Des48 - Crypthograpic de- and encoding.

➤ Digest - Message digest (MD5). [OCAML305]

➤ Dir - High level directory service interface.

➤ Disk client - Virtual Disk Server client interface which provides unique low level access to logi-
cal (partitions) and physical disks.

➤ Disk common - common part used by server and client.

➤ Disk pc86 - i386 dependent parts.

➤ Disk server - the disk server, running outside the kernel (UNIX).

➤ Disk server rpc - the server loop.

➤ Dns client - Directory and Name service (DNS) client interface

➤ Dns common - types and structures of the DNS common for client and server modules.

➤ Dns server - the core module of the Directory and Name server DNS.

➤ Dns server rpc - the server loop.

➤ Filename - Filename handling. [OCAML305]

➤ Format - Pretty printing. [OCAML305]

➤ Gc - Memory management control and statistics; finalised values. [OCAML305]

➤ Genlex - A generic lexical analyzer. [OCAML305]

➤ Hashtbl - Hash tables and hash functions. [OCAML305]

➤ Imagerpc - Image transfer utils.

➤ Int32 - 32-bit integers. [OCAML305]

➤ Int64 - 64-bit integers. [OCAML305]

➤ Ksys - Kernel system client interface.

➤ Ktrace - Kernel trace and debug support.

➤ Layz - Deferred computations. [OCAML305]

➤ Lexing - The run-time library for lexers generated by [ocamllex]. [OCAML305]

➤ List - Single linked List operations. [OCAML305]

➤ Machtype - Machine type representation, similar to OCaML’s int32 and int64 module, but more
general. Remember that OCaML integer are only 31/63 bit wide! The last bit is used internally.
So, when the bit length must be guarenteed, use THIS module.

➤ Map - Association tables over ordered types. [OCAML305]

➤ Marshal - Marshaling of data structures. [OCAML305]

FUNDAMENTALS 32

➤ Monitor - Server event monitor support.

➤ Mutex - Supports Mutual Exclusion locks.

➤ Name - Amoeba name interface (easy to handle frontend to DNS) support.

➤ Om - the core module of the Object Manager Server (Garbage Collector).

➤ Parsing - The run-time library for parsers generated by [ocamlyacc]. [OCAML305]

➤ Pervasives - This module provides the built-in types (numbers, booleans, strings, exceptions,
references, lists, arrays, input-output channels, ...) and the basic operations over these types.
[OCAML305]

➤ Printf - Formatted output functions. [OCAML305]

➤ Proc - Amoeba process client interface. Provides functions to execute (native) Amoeba binaries.

➤ Queue - First-in first-out queues. [OCAML305]

➤ Random - Pseudo-random number generator (PRNG). [OCAML305]

➤ Rpc - the fundamental communication interface.

➤ Sema - Semaphore synchronization support.

➤ Set - Sets over ordered types. [OCAML305]

➤ Shell - some utils for shell like programs.

➤ Signals - Adaption of Amoeba signals to VAM.

➤ Sort - Sorting and merging lists. [OCAML305]

➤ Stack - Last-in first-out stacks. [OCAML305]

➤ Stdcom - this module implements most of the Amoeba standard commands like std info.

➤ Stdcom2 - some more.

➤ Stderr - defines Amoeba standard errors.

➤ Stream - Streams and parsers. [OCAML305]

➤ String - String operations. [OCAML305]

➤ Sys - System independent system interface... [OCAML305]

➤ Thread - Amoeba multithreading module.

➤ Unix - interface to the UNIX operating system (similar to C functions).

➤ Vamboot - a core module implementing Amoeba boot services.

➤ Virtcirc - virtual circuits: distributed access of circular buffers.

➤ Weak - Arrays of weak pointers. [OCAML305]

➤ WX adjust - X widget library: Adjustement object. [Fab99]

➤ WX bar - X widget library: Horizontal and vertical basic widget container. [Fab99]

➤ WX base - X widget library: Base object. [Fab99]

➤ WX button - X widget library: Button object. [Fab99]

FUNDAMENTALS 33

➤ WX dialog - X widget library: Dialog object. [Fab99]

➤ WX display - X widget library: X display interface. [Fab99]

➤ WX filesel - X widget library: Fileselection menu object. [Fab99]

➤ WX image - X widget library: Generic image widget. Derived from the WX pixmap class. [Fab99]

➤ WX label - X widget library: Text label object. [Fab99]

➤ WX ledit - X widget library: Text input object. [Fab99]

➤ WX object - X widget library: Basic WX object support. [Fab99]

➤ WX popup - X widget library: Simple popup menu object. [Fab99]

➤ WX progbar - X widget library: Progress/Value bar object.

➤ WX radiobutton - X widget library: Radio button object. [Fab99]

➤ WX root - X widget library: Parent object for all toplevel windows. [Fab99]

➤ WX screen - X widget library: X interface utils. [Fab99]

➤ WX slider - X widget library: Slider object.

➤ WX table - X widget library: Table container for WX objects. [Fab99]

➤ WX tree - X widget library: Tree selector object. [Fab99]

➤ WX types - X widget library: Basic types. [Fab99]

➤ WX valbar - X widget library: Value bar object.

➤ WX viewport - X widget library: Encapsulates WX objects. [Fab99]

➤ WX wmtop - X widget library: X window manager interface. [Fab99]

➤ X - the core X11 graphic windows module. Enables direct X11 programming under VAM. Both
UNIX sockets and Amoebs Virtual Circuit X11 communication is implemented. [Fab99]

➤ XGraphics - machine-independent graphics primitives.

➤ Ximage - Generic image support. [Fab99]

➤ Xtypes - basic X11 types and structures. [Fab99]

With this incredible amount of VAM and OCaML modules (and there are still many more) several
Amoeba servers, administration and util programs are implemented to built a fully functional dis-
tributed operating system either on the top of UNIX or a more raw version on the top of the VX-kernel.
VAM Amoeba servers:

➤ AFS: the atomic filesystem server with backends for UNIX (the filesystem is stored in generic
UNIX files or harddisk partitions managed by UNIX) and Virtual Disks (the filesystem is stored
on harddisks managed by the VX-Kernel). The AFS filesystem consists of an inode partition
holding filesystem informations about each file (described by one inode) and the data partition(s)
holding the file data indexed by the file inode.

➤ DNS: the directory and name server. There are slightly different versions for UNIX and VX-
Amoeba. The DNS system consists of an inode partition which holds directory capabilities and
some basic. The directories itself are saved in generic AFS file obecjts.

FUNDAMENTALS 34

➤ VAMBOOT: boot services for an initial operating sysetm startup. The boot server is in fact only
a ML script using the boot module.

➤ VOM: a garbage collector server. This server is responsible to cleanup servers periodically. For
example the fileserver can contain file object not referenced anymore, directly speaking the capa-
bility of the file object is lost. The OM server is a ML script, too.

➤ VDISK: a virtual disk server providing a virtual disk interface for UNIX devices.

➤ BDISK: a bootdirectory server using the virtual disk interface either of native Amoeba or local
UNIX devices.

VAM administration and util programs:

➤ vash: the VAM shell. It’s a user interactive command line controlled shell compareable with
UNIX bash, providing most of the Amoeba administrative and standard commands.

➤ xafs: a graphical frontend both to the Amoeba directory and filesystem and the UNIX filesystem
allowing easy data transfer between both worlds.

➤ std: Amoeba standard commands directly accessible from the UNIX shell.

➤ vax: Executes native Amoeba binaries either located in the Amoeba AFS/DNS system or in the
local UNIX filessystem on a specified native Amoeba host. Amoeba kernels can be rebooted with
this tool, too.

FUNDAMENTALS 35

VAMRAW Fundamentals

This is a raw iron version of the virtual Amoeba machine running directly on the top of the VX-Kernel
and its bare bone process environment. Only the virtual machine from VAM was adapted to the VX-
Kernel. The ML modules kept unchanged. Because the VX-Amoeba process environment has only
a restricted UNIX emulation layer, the VAM-UNIX module is restricted in functionality. Only file
management is available and some trivial opertaions like the Unix.time function. There is no UNIX
process control implemented (of course - this makes no sense with native raw Amoeba). All the Amoeba
related and generic modules are fully functional.

FUNDAMENTALS 36

VAMNET Fundamentals

The VAMNET system forges all previously shown single parts to one hybride operating system:

➤ The VAM runtime environment with system servers and user interaction,

➤ the native VX-Kernel and a process envrionment on the top of the VX-Kernel,

➤ native VX-Amoeba programs, which can be user customized programs.

The next figure 13 shows an example configuration of such a hybrid system. Here, the VAM system
is used to control a CNC milling machine connected to external embedded PC104 hardware, running
with the VX-Kernel and a CNC machine device driver controlling the axis motion of the machine di-
rectly.
First, a boot script will start some basic servers needed for an operational Amoeba system. This is
the fileserver AFS afs unix and the directory and name server DNS dns unix. Both store informations
in generic UNIX files. Under UNIX, the FLIP server flipd is needed for client-server communication,
too.
Now the user can start some utils programs, like the VAM shell vash. For development purposes, the
interactive vam program can be used. With this program it’s for example possible to compile and exe-
cute ML scripts. Also it porvides an online help system containg the VAMNET book.
On the native Amobe side using an embedded PC104 system, there is a boot server to startup the
device driver needed to control the connected milling machine. Both computers are connected with
100MBit/s ethernet.
All shown components are merged to one operating system environment. With the VAM shell vash it’s
possible to get access to the native Amoeba Kernel, for example kernel statistic informations can be
simply accessed by calling the builtin kstat command. The administration of such a hybrid system is
quite simple. After the Amoeba file- and directory system was created (using the above shown servers,
too), only some capabilities must be inserted in the UNIX environment (using generic UNIX environ-
ment variables like ROOTCAP specifying the root capability) and the new created directory system,
and some system directories expected by various servers and util programs.
Most VAM programs can be executed directly on the native VX-kernel. Only the system Amoeba libam
and a limited UNIX emulation library libakjax are required to implement the VAM virtual machine.
This is the only VAM part which must be adapted to the VX-Amoeba process environment. The VAM
bytecode executables can be used unchanged for both the native and the AMUNIX Amoeba environ-
ment.

FUNDAMENTALS 37

AMUTHR

UNIX

NIC Hardware

LIBC

FLIPD
AMUNIX

AMUTHR
LIBC

AMUNIX
VAM

DNS

AMUTHR
LIBC

AMUNIX
VAM

AFS

Directory Server

File ServerFLIP Protocolstack

AMUTHR
LIBC

AMUNIX
VAM

BOOT

Bootserver

AMUTHR
LIBC

AMUNIX
VAM

VAM
Interactive VAM

AMUTHR
LIBC

AMUNIX
VAM

VASH

Shell

VX-Kernel

NIC Hardware

Userspace

Kernelspace

LIB AMOEBA

CNC

LIB AMOEBA

VAM-RAW

BOOT

BootserverDevice Driver

LIB AJAX

Network

Userspace

Kernelspace

Socket

(Fig. 13) A VAMNET example configuration connecting a UNIX desktop computer with a
network coupled PC104 controller.

FUNDAMENTALS 38

Performance Fundamentals

One of the incredible results of the VAM project is the fact that the Amoeba emulation layer AMUNIX
with the user process implementation of the protocol stack FLIP and the virtual machine approach
have only a slightly decreased performance compared with the native VX-Kernel and Amoeba imple-
mentation. The following tables gives an impression of the performance and capabilities of the native
VX-Kernel system, the AMUNIX and the VAM on the top of AMUNIX system.
The main indicator for the performance of a distributed operating system is the performance of the
messaging system, that means the data transfer rate and latency of messages without content (only
the message header is transferred).

(TAB. 1) RPC TEST: REMOTE WITH NATIVE VX-AMOEBA KERNEL

Machine config-
uration

Transfer direc-
tion

Transfer rate Latency

1: AMD-Duron
650 MHz CPU,
64MB RAM,
3COM905
100MBit/s Ether-
net

1⇒ 2 11,2 MBytes/s 130 µ s

2: Celeron 700
MHz CPU, 64MB
RAM, 3COM905
100MBit/s Ether-
net

2⇒ 1 10,6 MBytes/s 136 µ s

(TAB. 2) RPC TEST: REMOTE WITH NATIVE VX-AMOEBA KERNEL

Machine config-
uration

Transfer direc-
tion

Transfer rate Latency

1: AMD-Duron
650 MHz CPU,
64MB RAM,
3COM905
100MBit/s Ether-
net

1⇒ 2 10,5 MBytes/s 170 µ s

2: Cyrix 100
MHz CPU, 32MB
RAM, 3COM905
100MBit/s Ether-
net

2⇒ 1 9,54 MBytes/s 170 µ s

FUNDAMENTALS 39

(TAB. 3) RPC TEST: REMOTE WITH NATIVE VX-KERNEL AND AMUNIX
Machine config-
uration

Transfer direc-
tion

Transfer rate Latency

1: AMD-Duron
650 MHz CPU,
64MB RAM,
3COM905
100MBit/s Ether-
net, VX-Kernel

1⇒ 2 8,7 MBytes/s 270 µ s

2: Celeron 700
MHz CPU, 64MB
RAM, 3COM905
100MBit/s Ether-
net, FreeBSD ⊕
AMUNIX

2⇒ 1 9,1 MBytes/s 260 µ s

(TAB. 4) RPC TEST: REMOTE WITH VX-KERNL AND AMUNIX AND VAM
Machine config-
uration

Transfer direc-
tion

Transfer rate Latency

1: AMD-Duron
650 MHz CPU,
64MB RAM,
3COM905
100MBit/s Ether-
net, VX-Kernel

1⇒ 2 8,7 MBytes/s 300 µ s

2: Celeron 700
MHz CPU, 64MB
RAM, 3COM905
100MBit/s Ether-
net, FreeBSD ⊕
AMUNIX⊕VAM

2⇒ 1 8,7 MBytes/s 300 µ s

The above measurements are example measurements with an accuracy of about ± 10%. Of course,
table 1 shows that the transfer performance of a RPC message transfer from one to another machine
reaches it’s maximal value. Not only compared with the following AMUNIX and VAM system, also
compared with the maximal possible physical transfer rate of 100MBit/s ethernet: 11,9 MBytes/s.
This result shows the optiomal adaption of the FLIP protocol stack and the underlying ethernet device
drivers to this network system. Table 2 shows results with a different machine 2: a very old Pentium
like CPU (Cyrix MMX) with only 100 MHZ core frequency. The VX-Kernel yields to good performance
results downto i486 CPU machines.
Using the AMUNIX layer communicating with a native VX-Kernel (Table 3), only a slight decrease in
performance and latency can be observed. The transfer rates decreases about 20%, and the latency
increased about 100%. With additonal VAM (Table 4), there is no significant difference. This result
shows the suitability of ML programming and virtual machine concepts for client-server implementa-
tions.
The RPC message passing is not only used for the remote case, but for the local case, too. The following
table shows results for the various environments.

FUNDAMENTALS 40

(TAB. 5) RPC TEST: LOCAL CASE

Machine configu-
ration

Transfer direc-
tion

Transfer rate Latency

1: AMD-Duron 650
MHz CPU, 64MB
RAM, VX-Kernel

1⇒ 1 136 MBytes/s 12 µ s

1: Celeron 700 MHz
CPU, 128MB RAM,
FreeBSD ⊕ AMU-
NIX

1⇒ 1 26 MBytes/s 275 µ s

1: Celeron 700 MHz
CPU, 128MB RAM,
FreeBSD ⊕ AMU-
NIX ⊕ VAM

1⇒ 1 22,4 MBytes/s 400 µ s

No surprise the native VX-kernel is the winner. But the AMUNIX and VAM system have sufficient
transfer rates and latency times to implement efficient local RPC communication.

FUNDAMENTALS 41

FLIP

This section gives an indepth view and details about the implemantation and functionality of FLIP
(Fast Local Intranet Protocol) , Amoeba’s network protocol used for example by the RPC remote com-
munication and the group communication system.
Some features of FLIP [KAS93]:

1. FLIP identifies entities with a location independent 64 bit identifier. An entity can, for example,
be a process.

2. FLIP uses a one way mapping between the ’private’ address, used to register an endpoint of a
network connection, and the ’public’ address used to advertise the endpoint.

3. FLIP routes messages based on the 64 bit identifier.

4. FLIP discovers routes on demand.

5. FLIP uses a bit in the message header to request transmission of sensitive messages across
trusted networks.

FLIP 42

FLIP service defintions FLIP

(Reference: [KAS93])
FLIP is a connectionless protocol that is designed to support transparency, efficient RPC, group com-
munication, secure communication, and easy network management. Communication takes place be-
tween Network Service Access Points (NSAPs), which are addressed by 64 bit numbers.
NSAPs are location independent, and can move from one node to another (possibly on different phys-
ical networks), taking their addresses with them. Nodes on an internetwork can have more than one
NSAP, typically one or more for each entity (e.g., process). FLIP ensures that this is transparent to
its users. FLIP messages are transmitted unreliably between NSAPs and may be lost, damaged, or
reordered. The maximum size of a FLIP message is 232 -1 bytes. As with many other protocols, if a
message is too large for a particular network, it will be fragmented into smaller chunks, called frag-
ments. A fragment typically fits in a single network packet.
The reverse operation, reassembly, is (theoretically) possible, but receiving entities have to be able to
deal with fragmented messages. The address space for NSAPs is subdivided into 256 56 bit address
spaces, requiring 64 bits in all. The null address is reserved as the broadcast address.
The entities choose their own NSAP addresses at random (i.e., stochastically) from the standard space
for four reasons. First, it makes it exceedingly improbable that an address is already in use by another,
independent NSAP, providing a very high probability of uniqueness. (The probability of two NSAPs
generating the same address is much lower than the probability of a person configuring two machines
with the same address by accident.) Second, if an entity crashes and restarts, it chooses a new NSAP
address, avoiding problems with distinguishing reincarnations (which, for example, is needed to im-
plement atmostonce RPC semantics). Third, forging an address is hard, which, as we will see, is useful
for security. Finally, an NSAP address is location independent, and a migrating entity can use the
same address on a new processor as on the old one.
A FLIP box consists of an host interface, packet switch, and network interfaces. packets between phys-
ical networks, and between the host and the networks. It maintains a dynamic hint cache mapping
NSAP addresses on datalink addresses, called the routing table, which it uses for routing fragments.
As far as the packet switch is concerned, the attached host is just another network. The host interface
module provides the interface between the FLIP box and the attached host (if any). A FLIP box with
one physical network and an interface module can be viewed as a traditional network interface. A
FLIP box with more than one physical network and no interface module is a router in the traditional
sense.

FLIP 43

FLIP host interface FLIP

(Reference: [KAS93])
In principle, the interface between a host and a FLIP box can be independent of the FLIP protocol, but
for efficiency and simplicity, the interface is based on the FLIP protocol itself. The interface consists of
seven downcalls (for outgoing traffic) and two upcalls (for incoming traffic). An entity allocates an en-
try in the interface by calling flip init. The call allocates an entry in a table and stores the pointers for
the two upcalls in this table. Furthermore, it stores an identifier used by higher layers. An allocated
interface is removed by calling flip end.
By calling flip register one or more times, an entity registers NSAP addresses with the interface. An
entity can register more than one address with the interface (e.g., its own address to receive messages
directed to the entity itself and the null address to receive broadcast messages). The address specified,
the Private Address, is not the (public) address that is used by another entity as the destination of a
FLIP message. However, public and private addresses are related using the following function on the
loworder 56 bits:

Public-Address = One-Way-Encryption (Private-Address)

The One-Way-Encryption function generates the Public-Address from the Private-Address in such a
way that one cannot deduce the Private-Address from the Public-Address. Entities that know the
(public) address of an NSAP (because they have com<AD> municated with it) are not able to receive
messages on that address, because they do not know the corresponding private address. Because of
the special function of the null address, the following property is needed:

One-Way-Encryption (Address) =0 if and only if Address =0

The One-Way-Encryption function is currently defined using DES [National Bureau of Standards
1977]. If the 56 lower bits of the Private-Address are null, the Public-Address is defined to be null
as well. The null address is used for broadcasting, and need not be encrypted. Otherwise, the 56 lower
bits of the Private-Address are used as a DES key to crypt a 64 bit null block. If the result happens to
be null, the result is again encrypted, effectively swapping the result of the encrypted null address with
the encrypted address that results in the null address. The remaining 8 bits of the Private-Address,
concatenated with the 56 lower bits of the result, form the Public-Address.
Flip register encrypts a Private-Address and stores the corresponding Public-Address in the routing
table of the packet switch. A special flag in the entry of the routing table signifies that the address is
local, and may not be removed (as we will see in Section 5). A small EP identifier (End Point Identifier)
for the entry is returned. Calling flip unregister removes the specified entry from the routing table.
There are three calls to send an arbitrary length message to a Public-Address. They differ in the num-
ber of destinations to which msg is sent. None of them guarantee delivery. Flip unicast tries to send
a message point-to-point to one NSAP. Flip multicast tries to send a message to at least ndst NSAPs.
Flip broadcast tries to send a message to all NSAPs within a virtual distance hopcnt. If a message
is passed to the interface, the interface first checks if the destination address is present in the rout-
ing table and if it thinks enough NSAPs are listening to the destination address. If so, the interface
prepends a FLIP header to the message and sends it off. Otherwise, the interface tries to locate the
destination address by broadcasting a LOCATE message, as explained in the next section.
If sufficient NSAPs have responded to the LOCATE message, the message is sent away. If not, the
upcall notdeliver will be called to inform the entity that the destination could not be located. When
calling one of the send routines, an entity can also set a bit in flags that specifies that the destination
address should be located, even if it is in the routing table. This can be useful, for example, if the RPC
layer already knows that the destination NSAP has moved. Using the flags parameter the user can

FLIP 44

also specify that security is necessary.
When a fragment of a message arrives at the interface, it is passed to the appropriate entity using the
upcall receive. This interface delivers the bare bones services that are needed to build higher level
protocols, such as RPC. Given the current low errorrates of networks, we decided not to guarantee
reliable communication at the network level, to avoid duplication of work at higher levels [Saltzer et
al. 1986]. Higher level protocols, such as RPC, send acknowledgement messages anyway, so given the
fact that networks are very reliable it is a waste of bandwidth to send acknowledgement messages at
the FLIP level as well. Furthermore, users will never call the interface directly, but use RPC or group
communication.

flip init(ident, receive(), notdeliver(), removeaddr())⇒ ifno
Allocate an entry in the interface.
notdeliver(): A FLIP packet returns; the path to the destination is unknown or the destina-
tion is dead. If fl is zero, the flip interface could not locate the destination and we can assume
that the destination is dead (we don’t have process migration yet). If FLIP NOTHERE is set
in fl, we could try to send the packet again. However, we let the thread who sent the message
in the first place do the work (rpc notdeliver is probably called from the interrupt routine).
removeaddr(): Upcall from the FLIP packet switch to invalidate all cache entries with spec-
ified destination address.

flip end(ifno)
Close an entry in the interface.

flip register(ifno, Private-Address)⇒ EP
Listen to address.

flip unregister(ifno, EP)
Remove address.

flip unicast(ifno, msg, flags, dst, EP, length)
Send a message msg to dst.

flip multicast(ifno, msg, flags, dst, EP, length, ndst)
Send a multicast message msg to dst.

flip broadcast(ifno, msg, EP, length, hopcnt)
Broascast a message msg upto hopcnt hops.

receive(ident, fragment, description)
Fragment received.

notdeliver(ident, fragment, description)
Undelivered fragment received.

FLIP 45

FLIP protocol FLIP

A FLIP box implements unreliable message communication between NSAPs by exchanging FLIP frag-
ments and by updating the routing table when a fragment arrives.

FLIP 46

FLIP Fragment Format FLIP protocol

Similar to fragments in many other protocols, a FLIP fragment is made up of two parts: the FLIP
header and the data. A header consists of a 40 byte fixed part and a variable part. The fixed part of the
header contains general information about the fragment. The Actual Hop Count contains the weight
of the path from the source. It is incremented at each FLIP box with the weight of the network over
which the fragment will be routed. If the Actual Hop Count exceeds the Maximum Hop Count, the
fragment will be discarded. The Reserved (Res.) field is reserved for future use.

General Format of a FLIP fragment

7 6 5 4 3 2 1 0
Max HopCnt Actual HopCnt Res. Res. Type Vers.
0 Destination Address
0 Source Address
Length Message Identifier
Total Length Offset
Total Length

The Flags field contains administrative information about the fragment. Bits 0, 1, and 2 are specified
by the sender. If bit 0 is set in Flags, the integer fields (hop counts, lengths, Message Identifier, Offset)
are encoded in big endian (most significant byte first), otherwise in little endian [Cohen 1981]. If bit
1 is set in Flags, there is an additional section right after the header. This Variable Part contains
parameters that may be used as hints to improve routing, end-to-end flow control, encryption, or other,
but is never necessary for the correct working of the protocol. Bit 2 indicates that the fragment must
not be routed over untrusted networks. If fragments only travel over trusted networks, the contents
need not be encrypted. Each system administrator can switch his own network interfaces from trusted
to untrusted or the other way around.
Bits 4 and 5 are set by the FLIP boxes (but never cleared). Bit 4 is set if a frag ment that is not to be
routed over untrusted networks (bit 2 is set) is returned because no trusted network was available for
transmission. Bit 5 is set if a fragment was routed over an untrusted network (this can only happen if
the Security bit, bit 2, was not set). Using bits 2, 4, and 5 in the Flags field, FLIP can efficiently send
messages over trusted networks, because it knows that encryption of messages is not needed.
The Type field in the FLIP header describes which of the (seven) messages types this is (see below).
The Version field describes the version of the FLIP protocol; the version described here is 1. The
Destination Address and the Source Address are addresses from the standard space and identify, re-
spectively, the destination and source NSAPs. The null Destination Address is the broadcast address;
it maps to all addresses. The Length field describes the total length in bytes of the fragment excluding
the FLIP header. The Message Identifier is used to keep multiple fragments of a message together, as
well as to identify retransmissions if necessary. Total Length is the total length in bytes of the message
of which this fragment is a part, with Offset the byte offset in the message. If the message fits in a
single fragment, Total length is equal to Length and Offset is equal to zero.
The Variable Part consists of the number of bytes in the Variable Part and a list of parameters. The
parameters are coded as byte (octet) strings as follows:

Byte 0:Code, 1:Size, Size+1

The (non-zero) Code field gives the type of the parameter. The Size field giv es the size of the data in

FLIP PROTOCOL 47

this parameter. Parameters are concatenated to form the complete Variable Part. The total length of
the Variable Part must be a multiple of four byte s, if necessary by padding with null bytes.

FLIP message types

LOCATE
Find network location of NSAP.

HEREIS
Reply on LOCATE.

UNIDATA
Send a fragment point-to-point.

MULTIDATA
Multicast a fragment.

NOTHERE
Destination NSAP is unknown.

UNTRUSTED
Destination NSAP cannot be reached over trusted networks.

GONE
Broadcast with maximal hopcnt that a NSAP is gone (died). This message is used to
inform other FLIP boxes around that they can remove this NSAP from their caches
(both NSAP-to-Network-Address and RPC-to-NSAP caches).

FLIP PROTOCOL 48

FLIP Routing Protocol FLIP protocol

The basic function of the FLIP protocol is to route an arbitrary length message from the source NSAP
to the destination NSAP. In an internetwork, destinations are reachable through any one of several
routes. Some of these routes may be more desirable than others. For example, some of them may be
faster, or more secure, than oth ers. To be able to select a route, each FLIP box has information about
the networks it is connected to.
In the current implementation of FLIP, the routing information of each network connected to the FLIP
box is coded in a network weight and a secure flag. A low network weight means that the network is
desirable to forward a fragment on. The network weight can be based, for example, on the physical
properties of the network such as bandwidth and delay. Each time a fragment makes a hop from one
FLIP box to another FLIP box its Actual Hop Count is increased with the weight of the network over
which it is routed (or it is discarded if its Actual Hop Count becomes greater than its Maximum Hop
Count). A more sophisticated network weight can be based on the type of the fragment, which may be
described in the Variable Part of the header. The secure flag indicates whether sensitive data can be
sent unencrypted over the network or not.
At each FLIP box a message is routed using information stored in the routing table. The routing table
is a cache of hints of the form:

(Address, Network, Location, Hop Count, Trusted, Age, Local)

Address identifies one or more NSAPs. Network is the hardware dependent network interface on which
Address can be reached (e.g., Ethernet interface). Location is the datalink address of the next hop (e.g.,
the Ethernet address of the next hop). Hop Count is a misnomer, but it is maintained for historical
reasons.
Count is the weight of the route to Address. Trusted indicates whether this is a secure route towards
the destination, that is, sensitive data can be transmitted unencrypted. Age gives the age of the tuple,
which is periodically increased by the FLIP box. Each time a fragment from Adress is received, the
Age field is set to 0. Local indicates if the address is registered locally by the host interface. If the
Age field reaches a certain value and the address is not local, the entry is removed. This allows the
routing table to forget routes and to accommodate network topology changes. The Age field is also used
to decide which entries can be purged, if the routing table fills up.
The FLIP protocol makes it possible for routing tables to automatically adapt to changes in the net-
work topology. The protocol is based on seven message types (see lisiting above). If a host wants to
send a message to a FLIP address that is not in its routing table, it tries to locate the destination by
broadcasting a LOCATE message#. LOCATE messages are propagated to all FLIP boxes until the
Actual Hop Count becomes larger than the Maximum Hop Count. If a FLIP box has the destination
address in its routing table, it sends back an HEREIS message in response to the LOCATE.
User data is transmitted in UNIDATA or in MULTIDATA messages. UNIDATA messages are used for
point-to-point communication and are forwarded through one route to the destination. MULTIDATA
messages are used for multicast communication and are forwarded through routes to all the destina-
tions. If a network supports a multicast facility, FLIP will send one message for all destinations that
are located on the same network. Otherwise, it will make a copy for each location in the routing table
and send point-to-point messages.
If a FLIP box receives a UNIDATA message with an unknown destination, it turns the message into a
NOTHERE message and sends it back to the source. If a FLIP box receives a UNIDATA message that
should not be routed over untrusted networks (as indicated by the Security bit), and that cannot be
routed over trusted networks, it turns the message into an UNTRUSTED message and sends it back
to the source just like a NOTHERE message. Moreover, it sets the Unreachable bit in the message
(regardless of its current value). For a message of any other type, including a MULTIDATA message,
if the Security bit is set, and the message cannot be routed over trusted networks, it is simply dropped.
If, for a NOTHERE or a UNTRUSTED message, a FLIP box on the way back knows an alternative

FLIP PROTOCOL 49

route, it turns the message back into a UNIDATA message and sends it along the alternative route.
If, for a NOTHERE message, no FLIP box knows an alternative route, the message is returned to the
source NSAP and each FLIP box removes information about this route from the routing table.
LOCATE messages must be used with care. They should be started with a Max imum Hop Count of
one, and incremented each time a new locate is done. This limits the volume of broadcasts needed to lo-
cate the destination. Even though the hop counts are a powerful mechanism for locating a destination
and for finding the best route, if routing tables become inconsistent, LOCATE messages may flood the
internetwork (e.g., if a loop exists in the information stored in the routing tables in the internetwork).
To avoid this situation, each FLIP box maintains, in addition to its routing table, a cache of (Source
Address, Message Identifier, Offset, Destination Network, Location) tuples, with a standard timeout on
each entry. For each received broadcast message, after updating the routing table, it checks whether
the tuple is already in the cache. If not, it is stored there. Otherwise, the timeout is reset and the
message is discarded. This avoids broadcast messages flooding the network if there is a loop in the
network topology.

FLIP PROTOCOL 50

AMOEBA

This section describes the parts of the C programming interface of Amoeba common to both the native
Amoeba (VX-Kernel) and the AMUNIX execution environment. The content of this section has mainly
its origin in the Amoeba-5.3 programmer manual provide by the Vrije-University [AMPRO] .

AMOEBA 51

AMUNIX

This section deals with details about the Amoeba addon layer for UNIX operating systems. It consists
mainly of these parts:

1. The AMUTHR library implementing Amoeba threads in UNIX user process space,

2. the AMUNIX Amoeba library, the core Amoeba library for the AMUNIX environment,

3. the UNIX implementation of the Amoeba protocol stack FLIP, entirely implemented in UNIX
user process space,

4. some util programs,

5. and finally last but not least the AMUNIX development environment which enables the build of
AMUNIX executables and libraries:

➤ Amoeba source tree,
➤ a build tree with Amakefiles to built AMUNIX itself.

The AMUNIX system is both a runtime execution and development environment.

AMUNIX 52

AMCROSS

This section deals with details about the Amoeba crosscompiling environment for UNIX operating sys-
tems. It consists mainly of these parts:

1. The Amoeba source code tree (shared with AMUNIX),

2. the Amake configuration manager,

3. a build tree with Amakefiles,

4. and finally last but not least the gcc crosscompiler. This gcc was derived from the original source
code and can be compiled independently from the Amcross environment.

AMCROSS 53

VX-Kernel Programming

This section explains how to program device drivers and other parts inside the kernel and gives some
details about the kernel structure.

VX-KERNEL PROGRAMMING 54

Kernel Scheduler VX-Kernel Programming

The VX-Amoeba scheduler uses a two stage - 3 level priority scheme:

1. Process priorities:

HIGH
Highest process priority. The kernel is treated like any other process and has this pri-
ority. User processes with this highest priority should only be device drivers or other
kernel outsourced stuff.

NORM
Normal (default) process priority.

LOW
Lowest (=background) process priority

2. Each process has it’s own 3 level thread priority queues:

HIGH
Highest possible thread priority.

NORM
Normal (default) thread priority (both user and kernelprocess).

LOW
Lowest possible thread priority.

NILT
The idle thread (only kernelprocess).

Threads in higher priority processes (even they have lowest thread priority) have always higher prior-
ity then threads from lower priority processes (no matter their thread priority is).
Kernel threads are always switched non-preemptive. Processes are switched preemptive. User process
preemption can be enabled to switch threads of this process with preemption.
The global variable schedlevel controlls scheduler activity, too. Each time an hardware interrupt was
serviced, and the current (interrupted) thread belongs not to the kernel process (that means the system
is in user process mode), the schedule level is checked. In the case, the schedule level is not equal zero
(PROC SCHED), the scheduler is called after an interrupt, for example the timer interrupt. Because
interrupts can make threads waiting for an event ready to run, events have a higher priority than
normal CPU consuming activities. This leads to the nice feature, that a currenlty CPU consuming
thread (maybe regardless of his thread and process priority) will be interrupted for a thread (of maybe
another porcess) which was recently woken by an event!
Interrupt are handled with a two level system:

1. Low level interrupt handlers. They are called asynchronously directly due to a pending hardware
interrupt. But these functions may not call any global kernel functions directly. Instead, the low
level handler queues a high level handler. The low level handler are called in the current thread
and process context!

2. High level interrupt handlers. These handlers are then called from the scheduler within a pro-
tected thread environment (another kernel thread only living for this purpose). The scheduler

VX-KERNEL PROGRAMMING 55

will gain control to this thread immediately after an hardware interrupt occurs as soon as the
current running (kernel) thread releases control to the scheduler.

Keep the scheduling policy into mind if you’re writing kernel source code. A kernel thread can block
the kernel for ever. After a short time (about several seconds), the kernel interrupt hadnler queue
will overflow and a kernel panic abort will result. Because only the bare minimum is handled in the
(asynchronously called) interrupt handlers, the high level interrupt handler need a chance to execute.
Therefore, a kernel function, independent of it job, should execute as fast as possible and release
control as early as possible, maybe explicitly with a scheduler call. As described later, the VX-Kernel
has a dynamic timer management with arbitrary timer intervalls not limited due to a periodic tick
management. But the timer latency and therefore the accuracy is limited by the execution time of the
current running kernel thread!

VX-KERNEL PROGRAMMING 56

Overview VX-Kernel Programming

The tables below give an overview of available functions used by various kernel parts and device
drivers.

➤ Thread Management6

➤ Mutex Locks 7

➤ Semaphore Thread Synchronisation 8

➤ Event based Thread synchronisation 9

➤ Timer Management 10

➤ Interrupt Management 11

➤ IO Access 13

➤ PCI devices 14

(TAB. 6) Thread Management [sys/kthread.h]
Name/Interface Description
thread create() Create a new thread.
thread exit() Terminate thread execution.
thread alloc() Allocate thread local memory.
thread switch() Force a thread switch.
thread await() Wait for an event or timeout.
thread wakeup() Wakeup thread waiting for event.
thread await lock() Additionally with mutex lock.
thread id() Return thread id number.
thread set priority() Set thread priority

(HIGH/NORM/LOW).
thread delay() Suspend thread for specified time.

(TAB. 7) Mutex (Mutual exclusion) [module/mutex.h]
Name/Interface Description
mu lock() Lock a mutex.
mu trylock() Try to lock a mutex.
mu unlock() Unlock a mutex. Only allowed by

owner.

VX-KERNEL PROGRAMMING 57

(TAB. 8) Semaphore [semaphore.h]
Name/Interface Description
sema init() Initialize a semaphore variable.
sema up() Increment semaphore value.
sema down() Decrement sempahore value.
sema trydown() Try to decrement semaphore value.
sema level() Returns current semaphore level.
sema mdown() Decrement semaphore m times.
sema trymdown() Try to decrement semaphore m times.
sema mup() Increment semaphore m times.

(TAB. 9) Event [sys/await.h] (aka. thread XXX)
Name/Interface Description
await() Wait for an event or timeout.
await lock() With additional mutex lock.
await reason() Wait for named event (for debug-

ging).
wakeup() Wakeup waiting threads for an

event.

(TAB. 10) Time(r) Management [sys/timer.h]
Name/Interface Description
timer set() Install a new timer handler.
timer reset() Change already installed timer handler.
getmilli() Get current systemtime in milli seconds.
getmicro() Get current systemtime in micro sec-

onds.
udelay() Do busy wait delay in micro seconds.

VX-KERNEL PROGRAMMING 58

(TAB. 11) Interrupt Management [sys/kresource.h] [machdep/.../machine.h]
Name/Interface Description
FLAGS Defines flags variable (macro).
INTR LOCK Lock hardware interrupts. Save

CPU flags.
INTR UNLOCK Unlock hardware interrupts. Re-

store flags context.
request irq() Install and enable interrupt han-

dler.
free irq() Release interrupt handler.
probe irq on() Switch IRQ auto probing on.
probe irq off() Switch IRQ auto probing off.

(TAB. 12) I/O and memory resource Management [sys/kresource.h]
Name/Interface Description
request mem region(start,len,name) Request I/O memory region.
release mem region(start,len) Release I/O memory region.
check region(start,len) Check I/O port region.
request region(satrt,len,name) Request I/O port region.

(TAB. 13) I/O Port Management [machdep/.../ioport.h]
Name/Interface Description
in byte(adr) Read byte from I/O port.
in word(adr) Read 2 bytes from I/O port.
in long(adr) Read 4 bytes from I/O port.
out byte(adr,val) Write byte to I/O port.
out word(adr,val) Write 2 bytes to I/O port.
out long(adr,val) Write 4 bytes to I/O port.
ins byte(adr,ptr,bytecnt) Read cnt bytes from I/O port to ptr.

mem.
ins word(adr,ptr,bytecnt) Read cnt bytes from I/O port to ptr.

mem.
outs byte(adr,ptr,bytecnt) Write cnt bytes to I/O port from ptr.

mem.
outs word(adr,ptr,bytecnt) Write cnt bytes to I/O port from ptr.

mem.

VX-KERNEL PROGRAMMING 59

(TAB. 14) PCI Device Management [pci.h]
Name/Interface Description
pcibios present() Test for PCI Bus.
pcibios find device() Find a specified device.
pcibios find class() Find a specified device class.
pcibios strerror() Convert error value to string.
pcbios read config byte() Read PCI device config byte.
pcbios read config word() Read PCI device config word (16 Bit).
pcbios read config dword() Read PCI device config double word (32

Bit).
pcibios write config byte() Write PCI device config byte.
pcibios write config word() Write PCI device config word (16 Bit).
pcibios write config sword() Write PCI device config double word (32

Bit).

VX-KERNEL PROGRAMMING 60

Memory Management VX-Kernel Programming

aalloc
Allocates non-returnable memory on an arbitrary boundary with spezified alignment. Align-
ment argument must be on power of two. The length is specified in byte units.

getblk
This functions allocates page-aligned memory, in page-sized amounts (a page is a MMU
page, 512 bytes or so).

relblk
Return memory gotten from getblk.

malloc
Allocates reusable memory. The memory is aligned to ALIGNMENT bytes, specified in the
malloctune.h header file, currently 16 bytes, to satisfy allmost all alignments needed by the
kernel. The length is specified in byte units.

free
Release memory previously allocated with malloc.

PROGRAMMING INTERFACE [sys/proto.h] [stdlib.h]

char∗ aalloc (vir bytes size ,
int align);

vir bytes getblk (vir bytes size);

void relblk (vir bytes paddr);

void∗ malloc (size t len);

void free (void ∗ptr);

VX-KERNEL PROGRAMMING 61

IO-Port Access VX-Kernel Programming

IO-Ports of hardware devices can be accessed with the following functions. Make sure the IO regions
is previously allocated by the resource management and not used by any other device.
On PC86 machines, the IO-Port address space is in the range of {0x00-0xFFFF}. In contrast to other
kernels running on this machine system, the full IO range can be accessed and is managed by the
kernel! Be aware: there is no exception raised if a device driver accesses an I/O port which was never
requested by the device driver!

PROGRAMMING INTERFACE [machdep/arch/XXX/ioport.h]

void out byte (int port ,
int val);

void out word (int port ,
int val);

void out long (int port ,
int val);

int in byte (int port);

int in word (int port);

long in long (int port);

void outs byte (int port ,
char ∗ ptr ,
int bytecnt);

void outs word (int port ,
char ∗ ptr ,
int bytecnt);

void outs word l (int port ,
char ∗ ptr ,
int wordcnt);

void outs long l (int port ,
char ∗ ptr ,
int longcnt);

void ins byte (int port ,
char ∗ ptr ,
int bytecnt);

void ins word (int port ,
char ∗ ptr ,
int bytecnt);

VX-KERNEL PROGRAMMING 62

void ins word l (int port ,
char ∗ ptr ,
int wordcnt);

void ins long l (int port ,
char ∗ ptr ,
int longcnt);

Bytes of length 8bit, words of length 16bit, and longs (double words) of length 32bit can be read and
written with the respective functions declared above. There are some additional functions for old and
slow hardware, inserting a short delay: out ## p(),in ## p(). Memory regions can be copied to and from
hardware ports with the outs ##(),ins ##() functions. Take care about the count parameter values!

VX-KERNEL PROGRAMMING 63

Timer VX-Kernel Programming

The kernel supports timer management with microsecond resolution (depenending on the resolution
of the timer hardware device).
The kernel hardware timer is now implemented with an ”one-shot” behaviour with dynamically ad-
pated time intervals. After an interval time passed, an interrupt is triggered, and the interrupt service
routine will program the hardware timer with the next desired time interval. This enables the kernel
scheduler to handle timeouts with millisecond resolution. With special functions it’s possible to realize
software timers delivering microsecond resolution. Absolute time values are stored in 64-Bit unsigned
integers (unsigned long long).

timer set
The timer set function initializes a software interval timer. The user supplied function fun
will be called after the time interval period in unit (SEC, MILLISEC, MICROSEC) relative to
the current system time has elapsed. If the once argument is equal zero, the timer function
will be called periodically, else only one time.

timer reset
Change (reset or remove) an already installed timer handler. If the period value is set to
zero, the timer will be removed.

hw set timer
The hw set timer function sets the hardware timer to the new interval usec with microsec-
ond resolution. Always realtive to the last timer interrupt. Returns the passed time in
microseconds. Should only be used internally.

getmicro, getmilli
The getmicro and getmilli functions return the current system time in micro- or milliseconds.
The passed micro function returns the actual microseconds passed since the last timer in-
terrupt.

unit
The time unit used in various functions: MICROSEC, MILLISEC, SEC, MINUTE, HOUR.

PROGRAMMING INTERFACE [sys/timer.h] [amoeba.h] [sys/hw timer.h]

void timer set (void (∗fun)() ,
long arg ,
interval period ,
int unit ,
int once);

void timer reset (void (∗fun)() ,
long arg ,
interval period ,
int unit ,
int once);

unsigned int hw set timer (uint32 usec);

VX-KERNEL PROGRAMMING 64

uint32 passed micro (void);

uint64 getmicro (void);

uint32 getmilli (void);

VX-KERNEL PROGRAMMING 65

Thread Management VX-Kernel Programming

Both, user and kernel threads have the same programming interface. The thread management mod-
ule in the VX-Kernel was fully revised and differs interally from the orginal Amoeba kernel, but the
programming interface kept nearly unchanged, except some enhancements for therad creation.
This module provides simple thread support. Both, within the kernel, and outside in user progams,
the same API is used.

thread newthread
Creates a new thread. The thread function being called in the new thread context must have
the format:

void fun(char ∗param, int paramsize)

The thread newthread function will return the thread id number of the new creates thread.
The param memory must be allocated with malloc because it’s freed after a thread exit.
Obsolete! Use thread create instead.

thread create
Creates a new thread. The thread function being called in the new thread context must have
the format:

void fun(long arg)

The thread newthread function will return the thread id number of the new creates thread.
The arg must not be allocated with malloc because it’s not freed after a thread exit.

thread switch
Release control from the current thread. The calling thread will be blocked, and the sched-
uler will choose another thread being runable, if any.

thread exit
Exit a thread and do cleanup. The memory pointed by param will be released!

thread id, thread kid
Return the process loacl and kernel global thread id number of the current thread.

thread await
Wait for event ev or timeout within interval to. The event variable is only a key value for
the kernel, therfore any process address of a global variable can be used for an event await
or wakeup. The returned status value is either 0 (got event), or -1 (interrupted/timeout).

thread await lock
Wait for event ev or timeout within interval to. The event variable is only a key value for
the kernel, therfore any process address of a global variable can be used for an event await
or wakeup.
This version is protected with a mutex lock. The user thread must lock this mutex (and
protect his critical section) before calling await lock. The await lock syscall in the kernel will
unlock this mutex after preparing the thread for event awaiting, but before the scheduler
performs a thread switch.

thread wakeup
Wakeup waiting threads for event ev. Returns number of woken threads.

VX-KERNEL PROGRAMMING 66

thread delay
Delays execution of current thread for a given amount of time. The unti of the interval time
is specified by the second argument: MICROSEC, MILLISEC, SEC, MINUTE, HOUR.

PROGRAMMING INTERFACE [sys/kthread.h] [sys/timer.h] [amoeba.h]

int thread newthread (void (∗fun)() ,
int stacksize ,
char ∗param ,
int paramsize);

int thread create (void (∗fun)() ,
long arg ,
int stacksize ,
PRIO prio);

int thread id (void);

int thread kid (void);

int thread exit (void);

int thread await (event ev ,
interval to);

int thread await lock (event ev ,
interval to ,
mutex ∗mu);

int thread wakeup (event ev);

int thread delay (interval to ,
int unit);

VX-KERNEL PROGRAMMING 67

Resource Management VX-Kernel Programming

VX-KERNEL PROGRAMMING 68

IO Ports Resource Management

check region
Call this function before probing for your hardware or accessing any IO ports. The start
address and the length of the port region in byte units must be specified.

request region
Register an IO port region for a device driver. The supplied name string specifies the device.

release region
Release previously reserved IO port region. Make sure the start address and length are the
same as used with the reuqest region function.

PROGRAMMING INTERFACE [sys/kresource.h]

int check region (unsigned int start ,
unsigned int length);

int request region (unsigned int start ,
unsigned int length ,
char ∗name);

void release region (unsigned int start ,
unsigned int length);

RESOURCE MANAGEMENT 69

Device Memory Resource Management

request mem region
Register a device memory region for a device driver. The supplied name string specifies the
device.

release mem region
Release previously reserved memory region. Make sure the start address and length are the
same as used with the reuqest region function.

PROGRAMMING INTERFACE [sys/kresource.h]

int request mem region (unsigned long start ,
unsigned long length ,
char ∗name);

void release region (unsigned long start ,
unsigned long length);

RESOURCE MANAGEMENT 70

Kernel runtime configuration VX-Kernel Programming

The VX-Kernel can be configured before loaded and started with a program like option/flag list:

<kernelname > [-optionname:value [-optionname:value]...]
Example:
kernel -noreboot:2 -ide1:1

All kernel parameter expect integer values in decimal or hexadecimal format (with a preceeding 0x or
0X format identifier). The value zero indicates a disabled option. The following list shows all currently
availble options.

aip
Auto IRQ probing ofr asynchrounus serial interface.

1
enabled

0
disabled

ide0
IDE controller configuration:

1
probe only for master device

2
probe only for slave device

8
Don’t probe for IDE controller 0

ide1
IDE controller configuration:

1
probe only for master device

2
probe only for slave device

8
Don’t probe for IDE controller 1

kbl
Keyboard mapping:

VX-KERNEL PROGRAMMING 71

1
US mapping

2
German mapping

mem
Set the RAM memory size in MByte. The BIOS value gives the size only modulus 64 MByte!
A value larger then the physical memory will cause a system crash.

noreboot
Set the reboot mode after a kernel panic:

0
Auto reboot without halting the system and waiting for user interaction.

1
No auto reboot. User must press the reset button to reboot the system.

2
Switch back to VGA text mode (a kernel panic during graphics mode!).

3
Switch back to VGA text mode using VGA BIOS. The more safe method on accelarted
video cards.

rios0
Define a start address of a reserved IO port region. Usefull for PCI devices with IO addresses
(assigned by the BIOS) conflicting with IO addresses of ISA/PC104 devices. IO addresses of
PCI devices lying inside the reserved region will be relocated outside.
Up to 10 reserved IO regions can be defined (rios0..rios9).

rioe0
Define the end address of the above reserved region. If rios > 0, than rioe defaults to the
highest IO address (0xFFFF).
Up to 10 reserved IO regions can be defined (rioe0..rioe9).

VX-KERNEL PROGRAMMING 72

Kernel server VX-Kernel Programming

The operational functionality of the VX-kernel is structured with different servers.

VX-KERNEL PROGRAMMING 73

random - the random number server Kernel server

Synopsis

Currently built into the kernel [AMSYS]

Description

This server provides Amoeba programs with random numbers. No rights are required to use this
server. Random numbers are the privilege of all. There is only one command and that returns a
random number of the size specified.

Interface

The programming interface consists of the single command particular to the server (whose name
begins with rnd) and the standard server commands (whose names begin with std). A summary
of the supported commands is presented in the following two tables. For a complete description of
the interface routines see rnd(L) and std(L). Not all the standard commands are supported since
they are not all pertinent. Std copy and std destroy are not implemented. std age, std restrict
and std touch are implemented but simply return STD OK and do nothing further. They do no
error checking.

(TAB. 15) STANDARD FUNCTIONS

Function Name Required Rights Error Conditions Summary
std age NONE RPC Error Does nothing
std info NONE RPC Error Returns info string
std restrict NONE RPC Error Does nothing
std touch NONE RPC Error Does nothing

(TAB. 16) RND FUNCTIONS

Function Name Required Rights Error Conditions Summary
rnd getrandom NONE RPC Error Returns a random

number of the re-
quested size

Administration

There is only one administrative task relating to the random server. That is installing the ca-
pability of one of the random servers as the default random server. The place for installing
the default server capability is described in ampolicy.h by the variable DEF RNDSVR and is
typically /system/cap/randomsvr/default . However the place to install it is via the path /su-
per/cap/randomsvr/default which is the public directory. (The /system directory may vary from
user to user but typically points to the public version.) It is normal practice to allow the boot
server to maintain the default capability.

KERNEL SERVER 74

VX-Kernel: External Device Drivers

It’s also possible to build any kind of device drivers in user space. The device driver is handles just as
a generic user space process and can be started as any usual process using Amoeba’s process interface.
The only difference (if at all): the user space device driver needs a special capability to gain control
over I/O ports and for requesting interrupts (currently the kernel root capability for simplicity).

VX-KERNEL: EXTERNAL DEVICE DRIVERS 75

Device driver concepts VX-Kernel: External Device Drivers

Due to the fact that the VX-Amoeba Kernel is a true Microkernel, device drivers can be implemented
both inside and ouside of the kernel. Most source code of program sections of a device driver can be
shared between kernel inside and ouside implementations. Outside the kernel, device drivers are ex-
ecuted in a normal process context. They need only a special protection capability to access hardware
resources.
Main differences between these two implementation methods are exist in the way resources are en-
abled and used.
Resources are:

IO Ports
Generic hardware I/O ports of hardware devices.

IRQ
Interrupts generated by hardware devices.

MEM
Hardware device memory mapped in kernel address space. Either configuration or data
space of a device.

PCI
Access of devices connected to the local PCI bus system.

TIMER
Timing services scheduled by the VX-Kernel timer management and the thread/process
scheduler. This resource is needed to periodically execute user supplied functions, for ex-
ample device driver timeout management.

VX-KERNEL: EXTERNAL DEVICE DRIVERS 76

I/O Port Management VX-Kernel: External Device Drivers

User space I/O port access routines used in process space device drivers. All functions managing these
resources are implemented with the local IPC interface. The kernel system resource server is respon-
sible for this task.

VX-KERNEL: EXTERNAL DEVICE DRIVERS 77

Port resources I/O Port Management

On PC86 machines, the IO-Port address space is in the range of {0x00-0xFFFF}. In contrast to other
kernels running on this machine system, the full IO range can be accessed and is managed by the
kernel!
Be aware: all user processes with mapped I/O ports can access I/O ports used by other user processes
without an exception!

io check region
Before an external process can access I/O ports, in contrast to device drivers inside the ker-
nel, the process must register and map the desired I/O region. Because only one process can
map a specific I/O region, the io check region function must be called to check the availability
of the resources.

io map region
After the io check region function returns the STD OK status, the io map region function
can be used to map and register the I/O port region. After this call, I/O ports can be accessed
with the below explained functions.
Warning: the devname argument specified with the io map region function MUST be allo-
cated with the malloc/alloc functions, or the process will be terminated with an exception
(that means, the devname string must be outside of readonly text segments!).

io unmap region
Either implecitely on process exit, or explicitely, the I/O region can be unmapped with the
io unmap region function.

io vtop
The io vtop function translates a virtual process address region of specified length to the
physical (real) address. This is needed for DMA transfers, for example. The memory region
can be a mapped hardware segment, too.

io setpvl
The io setpvl function can be used to gain full I/O access for a program with changing the
IOPL.

[syscap]
The system capability of the kernel. Currently the kernel root directory capability. Can be
lookuped from the DNS server.

PROGRAMMING INTERFACE [ioport.h] [sys/iomap.h]

errstat io check region (unsigned int start ,
unsigned int size ,
capability ∗syscap);

errstat io map region (unsigned int start ,
unsigned int size ,
char ∗devname ,
capability ∗syscap);

errstat io unmap region (unsigned int start ,

I/O PORT MANAGEMENT 78

unsigned int size ,
capability ∗syscap);

errstat io vtop (long vaddr ,
long vlen ,
long ∗paddr ,
capability ∗syscap);

errstat io setpvl (int pvl ,
capability ∗syscap);

I/O PORT MANAGEMENT 79

Port access I/O Port Management

PROGRAMMING INTERFACE [machdep/arch/XXX/ioport.h]

void out byte (int port ,
int val);

void out word (int port ,
int val);

void out long (int port ,
int val);

int in byte (int port);

int in word (int port);

long in long (int port);

void outs byte (int port ,
char ∗ ptr ,
int bytecnt);

void outs word (int port ,
char ∗ ptr ,
int bytecnt);

void outs word l (int port ,
char ∗ ptr ,
int wordcnt);

void outs long l (int port ,
char ∗ ptr ,
int longcnt);

void ins byte (int port ,
char ∗ ptr ,
int bytecnt);

void ins word (int port ,
char ∗ ptr ,
int bytecnt);

void ins word l (int port ,
char ∗ ptr ,
int wordcnt);

void ins long l (int port ,
char ∗ ptr ,

I/O PORT MANAGEMENT 80

int longcnt);

Bytes of length 8bit, words of length 16bit, and longs of length 32bit can be read and written with the
same functions declared already in the kernel section. Memory regions can be copied to and from hard-
ware ports with the outs ##(),ins ##() functions respectively. Take care about the count parameter!

I/O PORT MANAGEMENT 81

Example: Userprocess I/O I/O Port Management

Here is a short example for accessing I/O ports through user processes.

#include < sys/iomap.h >
#include < ioport.h >

#define KERNELSYSCAP "/hosts/dio01"
#define MYNAME "MYSERVER"

int main()
{

char ∗devname=malloc(SIZEOF(MYNAME)+1);
errtstat err;
capability syscap;

err = name lookup (KERNELSYSCAP,&syscap);
if (err ! = STD OK)
{
failwith("Can’t lookup kernel cap");
}
err = io checkregion (0x278,4,&syscap);

if (err ! = STD OK)
{
failwith("I/O region already used");
}

strcpy(devname,MYNAME);
err = io map region (0x278,4,devname,&syscap);

if (err ! = STD OK)
{
failwith("IO mapping failed...");
}

out byte (0x278,0xff);

/ ∗ all done ∗/

io unmap region (0x278,4,&syscap);

return 0;

}

I/O PORT MANAGEMENT 82

Interrupt handler VX-Kernel: External Device Drivers

The way interrupts are handled is different inside and ouside the kernel. Inside th kernel, simply an
interrupt handler function is installed. Outside the kernel, this method is not preffered, because an
interrupt handler executes usually in an arbitrary context of the current running process (kernel or
user process). Therefore, interrupt handling differs outside the kernel in a user process. A dedicated
interrupt handler thread requests an interrupt from the system server of the kernel. If this succeeds,
the interrupt thread calls the interrupt await function signal the await for an interrupt previously
registered. If the assigned hardware devuce triggers the interrupt, the kernel interrupt module will
wakeup this waiting thread. The interrupt thread will executes as soon as possible, depending on the
process and thread priority. After the work is done, or the interrupt source in the case of shared inter-
rupts is not handled by this device driver, the interrupt thread will call the interrupt done function to
signal the kernel the finished service for this hardware interrupt. In the case that there is more than
one handler (shared interrupt signals), further handler functions will be executed untill one handler
signals the succesfull service of the interrupt.
To request and service interrupts, the kernel system capability (currently the kernel root directory ca-
pability) is requiered. The kernel system server manages user space interrupt requests. Ths register
functions are stubs for IPC message transfers to the system ISR server inside the kernel with the port-
name sys::isr-server . The message request holds the content of the user supplied isr structure.

interrupt register
Register an interrupt service thread. The following entries in the isr structure must be set:

isr.irq =[hardware irq number];
isr.flags =[IRQ NORMAL | IRQSHARED];
strcpy(isr.devname,"mydev");

Important: This fucntion must be called within the interrupt service thread!
interrupt await

Now the ISR handler thread can wait for interrupts. The event variable is taken from isr
structire previously used with interrupt register :

interrupt await(isr.irq,isr.ev);

The interrupt kept locked untill interrupt done is called.
interrupt done

After the interrupt service routines finished his work - either the interrupt source was han-
dled or the ISR find out that’s not his device that triggers the interrupt - this function MUST
be called with the appropiate flag set:

status =[IRQ SERVICED | IRQ UNKNOWN];
interrupt done(isr.irq,status);

interrupt unregister
This function unregisters a previously registered interrupt service routine. The isr structrue

VX-KERNEL: EXTERNAL DEVICE DRIVERS 83

must be same as used by the interrupt register function.
Usuallay, interrupt resource of user space device drivers are released on process exit.

PROGRAMMING INTERFACE [sys/isr.h]

struct isr handler { int irq ;
int flags ;
char devname[MAX DEVNAME LEN] ;
event ev ;
unsigned long id }

typedef struct isr handler isr handler t
, ∗isr handler p

errstat interrupt register (isr handler p isr ,
capability ∗syscap);

errstat interrupt unregister (isr handler p isr ,
capability ∗syscap);

errstat interrupt await (int irq ,
event ev);

errstat interrupt done (int irq ,
int status);

EXAMPLE

capability syscap;
#define HOSTCAP =/hosts/juki01
void myisr()
{

errstat err;
int stat;
isr handler t isr;
err =name lookup(HOST PATH,&syscap);
...
isr.irq =3;
isr.flags =IRQ NORMAL;
strcpy(isr.devname,"Serial Comm");
err =interrupt register(&isr,&syscap);
...

VX-KERNEL: EXTERNAL DEVICE DRIVERS 84

for(;;)
{
stat =interrupt await(isr.irq,isr.ev);
...
stat =interrupt done(isr.irq,IRQ SERVICED);
}

}

VX-KERNEL: EXTERNAL DEVICE DRIVERS 85

UTimer VX-Kernel: External Device Drivers

Timer management also exists for user processes with microsecond resolution (depenending on the
resolution of the timer hardware device and the dead time of process system calls).
In contrast to the kernel implementation, there is no user supplied timer function called on a timer
event. Instead, a await-wakeup mechanism is used, simlar to user process interrutps.

timer init
The timer init function initializes and installs a new software interval timer. The user sup-
plied event ev will be wakedup after the time interval period in unit (SEC, MILLISEC, MI-
CROSEC) relative to the current system time has elapsed. If the once argument is equal
zero, the timer function will be called periodically, else only one time.

timer reinit
Change (reset or remove) an already installed timer handler. If the period value is set to
zero , the timer handler witll be removed.

timer await
The timer await function is blocked untill the timer event was raised by the kernel timer
module.

unit
The time unit used in various functions: MICROSEC, MILLISEC, SEC, MINUTE, HOUR.

PROGRAMMING INTERFACE [sys/utimer.h]

typedef int timer event

int timer init (timer event ∗ev ,
interval period ,
int unit ,
int once);

int timer reinit (timer event ∗ev ,
interval period ,
int unit ,
int once);

interval timer await (timer event ∗ev);

VX-KERNEL: EXTERNAL DEVICE DRIVERS 86

IPC VX-Kernel: External Device Drivers

The IPC module is intended to use by userspace device drivers to communicate locally both with the
kernel and other device drivers outside the kernel in a fast and easy way, very similar to the RPC
interface used for both local and remote interprocess communicarion.

VX-KERNEL: EXTERNAL DEVICE DRIVERS 87

VAM Development System

The development system contains several ML libraries, the virtual machine, an interactive ML inter-
preter called VAM, the ML compilers (also builtin VAM) and many more.
Documentation for the following libraries are available:

➤ ML-Library: amoeba.cma (P. 99)

➤ ML-Library: buffer.cma (P. 144)

➤ ML-Library: server.cma (P. 152)

➤ ML-Library: threads.cma (P. 204)

VAM DEVELOPMENT SYSTEM 88

Installation VAM Development System

The VAM system is both delivered in source code and binary form. The build process from scratch
requires only a few steps. The VAM system depends on the following packages:

amake-unix
The Unix version of the Amoeba make program. This program must be compiled first of
all other packages. It’s only a bootstrap version. The final one is compiled in the following
AMUNIX environment.

amoeba-src
The source code of the native Amoeba system and the AMUNIX system.

amoeba-build-amunix
The build tree of the AMUNIX system. This incorporates a reduced Amoeba core library
targeting the Unix environment, the UNIX version of the communication protocol stack
flipd, a thread package, and some util programs.

amoeba-build-crossutils-myos (optional)
Programs and utils for the UNIX crosscompiling envionment. This enviornment enables the
building of native Amoeba programs under Unix.

amoeba-build-amcross (optional)
The amoeba build tree using the above mentioned crosscompiling tools. Here, native Amoeba
libraries, programs and kernels can be build.

The first three are required and must be build in the order shown above. The steps are described in
the AMUNIX manual, not here.

VAM DEVELOPMENT SYSTEM 89

Building VAM Installation

1. You need the bash shell under the path /bin/bash

2. Make sure your path setting includes the current directory FIRST for all other paths:

export PATH =.:$PATH

3. Choose the appropriate system dependent Amakefile.sys.<myos> and edit the Amakefile.sys file:

vi Amakefile.sys

4. Edit at least the path settings in this Amakefile:

VAMDIR = /amoeba/vam-1.7;
INSTALLDIR = /amoeba/Vam-1.7;

5. Build the system. Simply start from the VAM source top directory:

build clean # remove old remains
build all
build install

6. You can always set parts or the all of the compiling environment to the initial clean state with
the command:

build clean

7. You can enter subdirectories of the build tree and build only single parts of the system with the
same commands shown above:

build clean

8. If something goes wrong, contact the author:

Dr. Stefan Bosse
BSSLAB, Bremen, Germany

INSTALLATION 90

http://www.bsslab.de

INSTALLATION 91

Directory Structure Installation

The source distribution:

$VAMDIR
The top level directoty holding the main Amakefiles and the toolset directoty with various
common defintions needed to build OCaML and VAM. Default is /amoeba/vam-1.7.

$VAMDIR/src
The sources.

$VAMDIR/src/amoeba
The basic Amoeba module. Contains the Amoeba basic modules with RPC support and some
client modules for accessing Amoeba servers.

$VAMDIR/src/buffer
Generic byte buffer management.

$VAMDIR/src/debug
Some debug management.

$VAMDIR/src/ocaml
The sources for the OCaML system. These sources base currently on the offical 3.05 release,
but are strongly modified.

$VAMDIR/src/os
Operating system dependent modules.

$VAMDIR/src/scripts
Various VAM scripts, for example the VAM compiler script vamc.

$VAMDIR/src/server
Common server implementations like AFS and DNS.

$VAMDIR/src/system
VAM system programs, for example the AFS and DNS servers.

$VAMDIR/src/termianl
The readline terminal module.

$VAMDIR/src/threads
Thread implementation based on Amoeba threads (AMUNIX version).

$VAMDIR/src/top
The main module for VAM.

$VAMDIR/src/unix
The Unix library.

$VAMDIR/src/xwin
The X-Library fully reqritten in ML (by Fabrice Le Fessant) and a simple widget library
build on the top of xlib.

The binary distribution:

$INSTALLDIR
The top level directoty holding the OCaML and the VAM system binaries, libraries and
interface files. The default is /amoeba/Vam-1.X.

$INSTALLDIR/bin
VAM binaries and scripts.

INSTALLATION 92

$INSTALLDIR/config
VAM configuration scripts like the boot script boot and the virtual object manager vom.

$INSTALLDIR/doc
This directory holds several documents about VAM and OCaML..

$INSTALLDIR/interface
VAM interface files.

$INSTALLDIR/lib
VAM ML and C libraries.

$INSTALLDIR/ocamlsys
The underlying OCaML system: binaries, libraries, interface files, headers.

$INSTALLDIR/toolset
VAM development files, for example the Amakfile.sys VAM system configuration and other
tool scripts needed by Amoebas make program Amake to build VAM applications. There are
also default Amakefile templates.

INSTALLATION 93

Compiling ML to Bytecode VAM Development System

ML source code can be compiled and linked to archives or bytecode programs. Additionally, new custom
designed virtual machines and interactive systems can be genrated. There are two ways to perform
this tasks:

1. Using the vamc script as a frontend to the VAM-ML compiler,

2. or using the Amoeba configuration manager amake with an Amakefile defining target clusters
and sources in a much more comfortable way than using the vamc script.

VAM DEVELOPMENT SYSTEM 94

The vamc script Compiling ML to Bytecode

This is the simplest and easiest way to compile ML source code and built VAM bytecode programs
suitable for executing on native Amoeba-VAM (VAMRAW) and UNIX-VAM. But not only ML code can
be compiled. This script provides a frontend for the C compiler (but using the ocaml frontend with
path settings), too.

Usage

vamc [Options] <input > -o <output >

Program arguments

-c
Compile a single source code file into object bytecode format. Ths file extension deter-
mines the compiler mode: ML or C.

-i
Create an ML interface file from ML source.

-a
Link specified source object files into an archive file specified with the output argument.

-build-vm
Build a new custom designed virtual machine (only UNIX native format).

-g
Add debugging informations. On an uncaught exception during program execution, only
sources and objects supplied with debug informations are printed in the function back-
trace. All compiling steps must be provided with this option, also the link process.

-usepp
Use the C preprocessor. The VAM-ML compiler supports C style like preprocessor direc-
tives within ML source code!

Examples

vamc -c myml.ml
vamc -o mybyteprog myml.cmo
vamc -a -o myarch.cma myml.cmo
vamc -c main.ml
vamc -o mabyte2 main.cmo myarch.cma

COMPILING ML TO BYTECODE 95

Amake configuration manager Compiling ML to Bytecode

The amake program provided in the AMUNIX binary collection can also be used to built bytecode pro-
grams or libraries. Amake needs a list of source code, a definition of tools to transform source of a
specified type, for example ML or C code, into another type, for example object code or archives. But
object code can be again a source for a so called cluster. The clutser defines the way to transform source
into target codes. Several clusters in a chain are needed to built programs. To make live easy, the tools
and source-to-target transformations are already provided by VAM and AMUNIX.
One of the features is that the source directory is separated from the build directory. The source direc-
tory must contain a file specifying all the sources, for example:

CNCLIB = {
$PWD/help.ml,
$PWD/cnc defaults.ml,
$PWD/dxf.ml,
$PWD/dxf.mli,
$PWD/cnc.ml,

};

CNCMAIN = {
$PWD/main.ml

};

Now make a build directory somewhere else. In this directory place the Amakefile:

TOP=/amoeba/Vam-1.7;
SRCROOT=/home/sbosse/proj/dxf2cnc/src;

%include $TOP/Amakefile.sys;
%include $TOP/Amakefile.common;

%include $SRC ROOT/Amake.srclist;

INCLUDES = {
-I,
$SRCROOT,

};

some general compile defintions
DEFINES = {

-g,
};

the sources with source specific compile flags
SRC = {

$CNCLIB # [flags ={-po,-DLOG }]
};

the target library
LIB = dxf2cnc.cma;

COMPILING ML TO BYTECODE 96

%include $VAMDIR/toolset/ocaml.lib;
%include $VAMDIR/toolset/ocaml.sys;

%instance libcluster ($LIB,$SRC);

and the bytecode program
PNAME= dxf2cnc;
PLIBS = {

unix.cma,
str.cma,
dxf2cnc.cma,

};

PSRC = $CNCMAIN;
VM = $VAMDIR/bin/vamrun;
%instance bytecode-exe ($PNAME,$PLIBS,$VM,$PSRC);

This Amakefile must first specify the path to the binary VAM tree (the toplevel path variable TOP) and
the path to the source code your are want to compile. The Amakefile now includes two important files
describing system dependent and independent features of the VAM system. They are already adjusted
to your system. Some more Amake variables will define the sources and targets. There are two main
cluster, libcluster and bytecode-exe , which will build the intermediate library dxf2cnc.cma ,
and finally the bytecode program dxf2cnc . These two clusters must be build with independent amake
calls:

amake dxf2cnc.cma
amake dxf2cnc

Note: It’s important to create the directory interface in the build directory!
In contrast to the vamc script, you must specify VAM system libraries which are needed by your pro-
gram. They must be added to the library list in the given order:

➤ debug.cma

➤ buffer.cma

➤ unix.cma

➤ str.cma

➤ threads.cma

➤ os.cma

➤ test.cma

➤ amoeba.cma

➤ server.cma

In the case, the graphical widget system is used, there are some more:

COMPILING ML TO BYTECODE 97

➤ xlib.cma

➤ wxlib.cma

COMPILING ML TO BYTECODE 98

ML-Library: amoeba.cma VAM Development System

VAM DEVELOPMENT SYSTEM 99

Content ML-Library: amoeba.cma

Content of the Amoeba library, building the fundamentals of the VAM system:

➤ Module: Amoeba (P. 101)

➤ Module: Ar (P. 106)

➤ Module: Buf (P. 111)

➤ Module: Bytebuf (P. 145)

➤ Module: Cache (P. 114)

➤ Module: Cap env (P. 115)

➤ Module: Capset (P. 116)

➤ Module: Circbuf (P. 117)

➤ Module: Cmdreg (P. 120)

➤ Module: Dblist (P. 121)

➤ Module: Des48 (P. 122)

➤ Module: Dir (P. 123)

➤ Module: Disk client (P. 125)

➤ Module: Bootdir (P. 108)

➤ Module: Machtype (P. 128)

➤ Module: Monitor (P. 131)

➤ Module: Name: (P. 132)

➤ Module: Proc (P. 133)

➤ Module: Rpc (P. 134)

➤ Module: Stdcom (P. 137)

➤ Module: Stdcom2 (P. 138)

➤ Module: Stderr (P. 139)

➤ Module: Stdobjtypes (P. 140)

➤ Module: Virtcirc (P. 142)

ML-LIBRARY: AMOEBA.CMA 100

Module: Amoeba ML-Library: amoeba.cma

This is the base Amoeba module covering the following areas:

➤ Basic types

➤ Capability and Port functions

➤ The RPC header structure

➤ Encryption

Basic Types

The following types are used in capabilities and headers:

PROGRAMMING INTERFACE

type rights bits = Rights bits of int

type obj num = Objnum of int

type command = Command of int

type errstat = Errstat of int

type status = Status of int

type port = Port of string

type privat = { mutable prv object: obj num ;
mutable prv rights: rights bits ;
mutable prv random: port }

The main Amoeba structure is the capability. The main purpose of a capability is to give an
arbitrary object an unique identifier. Objects can be of several types:

➤ Files
➤ Directories
➤ Processes
➤ Memory Segments
➤ Server

ML-LIBRARY: AMOEBA.CMA 101

and many more. The RPC header structure is needed for communication between clients and
servers. Details on RPC programming are shown in the Tutorial (??).

PROGRAMMING INTERFACE

type capability = { mutable cap port: port ;
mutable cap priv: privat }

type header = { mutable h port: port ;
mutable h priv: privat ;
mutable h command: command ;
mutable h status: status ;
mutable h offset: int ; . 32 bit /
mutable h size: int ; . 16 bit /
mutable h extra: int } . 16 bit /

Basic Functions and Values

Functions to manage and manipulate ports, capabilities and headers are provided.

PROGRAMMING INTERFACE

[port] = port new ()

[privat] = priv new ()

[capability] = cap new ()

[bool] = port cmp Module: →
p2: port

[bool] = nullport port

[port value: int] = get portbyte ∼port : port→
∼byte : int

[unit] = set portbyte ∼port : port→
∼byte : int

The XX new functions return fresh values of the specific type. The port cmp function test two
ports for equality. The result is a boolean value. The null port function tests for a zero port (all

ML-LIBRARY: AMOEBA.CMA 102

bytes zero). The XX portbyte functions are used to modify single bytes from a port value.
For each basic structure, there is a so called nil value - a dummy value for initial reference as-
signments, for example

let ref port = ref nilport

PROGRAMMING INTERFACE

val nilport: port

val nilpriv: privat

val nilcap: capability

val nilheader: header

Some care must be taken in the case of multithreaded programming in OCaML (the default
case in VAM). Because of the highly degree of optimisation in OCaML, different threads using
the same function or module can share physically the same variables with undeterministic be-
haviour. To get a physical new copy of an existing value, there are some copy functions:

PROGRAMMING INTERFACE

[command] = cmd copy command

[status] = stat copy status

[hedare] = header copy header

Encryption and Rights

Amoeba uses currently a standard 48 bit data encryption service. To encrypt a port value, in-
ternaly the one way function is used. This function uses itself the Des48 module for the real
encryption. The user level function priv2pub is equipped with an additional cache for already
encrypted ports. This function is used to convert a private server port to a public client port,
needed for the Remote Procedure Call communication layer. The private ports are only used by
the server getreq function, and the public port is used only by the client trans function. See the
????? module for details.
The uniqport function creates a new random port.

ML-LIBRARY: AMOEBA.CMA 103

There are two functions for encoding and decoding of private parts from a capability:

➤ prv encode → encode a private checkfield port with an object number and specific rights to
a new private field for a capability

➤ prv decode → decode a private part of a capability and verify the private checkfield port
again

To extract the rights field and the object number from a private part of a capability, the prv rights
and prv number functions are provided. Because the rights field in a capability can be manipu-
lated by anyone, and for example a capability with restricted rights is manipulated to full rights,
always the prv decode function must be used to verify the correctness of the private field.

PROGRAMMING INTERFACE

val prv all rights: rights bits

[oport] = one way iport: port

[pubport: port] = priv2pub prvport: port

[bool] = prv decode ∼prv : privat→
∼rand : port

[en privat: privat] = prv encode ∼obj : int→
∼rights : rights bits→
∼rand : port

[obj num] = prv number privat

[rights bits] = prv rights privat

[newport: port] = uniqport ()

There are several functions to manipulate and check rights fields. The rights req functions ex-
pects a rights field and a required rights list. The rights set function ca be used to create a rights
field from a rights list.

PROGRAMMING INTERFACE

[rights bits] = rights and or xor rights bits→
rights bits

ML-LIBRARY: AMOEBA.CMA 104

[rights bits] = rights not rights bits

[bool] = rights req ∼rights : rights bits→
∼required : rights bits list

[rights bits] = rights set rights bits list

ML-LIBRARY: AMOEBA.CMA 105

Module: Ar ML-Library: amoeba.cma

This module delivers the programmer with a collection of functions to convert Amoeba basic structures
like ports and capabilies in an ASCII string representation and vice versa.

Amoeba to String

PROGRAMMING INTERFACE

[string] = ar port port: port

[string] = ar priv private: privat

[string] = ar cap cap: capability

[string] = ar cs cs: capset

These functions convert an Amoeba port, a private field and a capability into a string. The string
output has the following format:

Port: x:x:x:x:x
Private: d(r)/y:y:y:y:y:y

d: object number
(r): rights field

Capability: x:x:x:x:x:x/d(r)/y:y:y:y:y:y

d: decimal value
x,y,r: hexadecimal value

String to Amoeba

PROGRAMMING INTERFACE

[port] = ar toport sport: string

[privat] = ar topriv sprivate: string

[capability] = ar tocap scap: string

ML-LIBRARY: AMOEBA.CMA 106

These functions convert ports, private fields and capabilities from the string format shown above
into values. The ar cap and ar tocap functions are also available under the names c2a and a2c.

ML-LIBRARY: AMOEBA.CMA 107

Module: Bootdir ML-Library: amoeba.cma

Amoeba boot (kernel) directory partition read and write support routines.
The Amoeba boot partition is a very simple complete filesystem containing:

➤ Kernel images,

➤ Binaries for bootstrap purposes,

➤ configuration files and many other user customized things.

This partition, managed by the virtual disk server in a low elevel way, and usually labeled vdisk:01, is
also read by the Amoeba boot manager.
The filesystem consists only of up to bde NENTRIES (=21) files specified with a name string of maxi-
mal length bde NAMELEN (=16).
There are function to store and retrieve the boot directory to and from generic bytebuffers.

PROGRAMMING INTERFACE Types and Strcutures

val bd MAGIC: word32

val bd NENTRIES: int

val bde NAMELEN: int

type bootdir entry = { mutable bde start: word32 ; . start sector/block /

mutable bde size: word32 ; . size in sectors/blocks /
mutable bde name: string } . name of entry - bde NAMELEN /

type bootdir = { mutable bd magic: word32 ;
mutable bd entries: bootdir entry array ;
mutable bd unused: word32 }

PROGRAMMING INTERFACE Functions

[pos: int ∗
bootdir entry] = buf get bde ∼buf : buffer→

∼pos : int

[pos: int ∗
bootdir] = buf get bd ∼buf : buffer→

∼pos : int

ML-LIBRARY: AMOEBA.CMA 108

[pos: int] = buf put bde ∼buf : buffer→
∼pos : int→
∼bdes : bootdir entry

[pos: int] = buf put bd ∼buf : buffer→
∼pos : int→
∼bd : bootdir

[string] = bde name bname: string

Module dependencies

➤ Amoeba
➤ Bytebuf
➤ Buf
➤ Machtype

ML-LIBRARY: AMOEBA.CMA 109

Module: Bstream ML-Library: amoeba.cma

Generic byte stream support for stream like servers, for example Amoeba’s serial port server residing
in the kernel.

stream read
read max. # size bytes from stream server specified with srv capability.

stream buf read
same as above, but read into a buffer starting at pos of maximal length size. Returns # of
received bytes.

stream write
write # size bytes to stream server specified with srv capability.

stream buf write
same as above, but write from a buffer starting at pos of maximal length size.

PROGRAMMING INTERFACE

[status ∗
string] = stream read ∼srv : capability→

∼size : int

[status ∗
n: int] = stream buf read ∼srv : capability→

∼buf : buffer→
∼pos : int→
∼size : int

[status] = stream write ∼srv : capability→
∼str : string

[status] = stream buf write ∼srv : capability→
∼buf : buffer→
∼pos : int→
∼size : int

Module dependencies

➤ Amoeba
➤ Bytebuf

ML-LIBRARY: AMOEBA.CMA 110

Module: Buf ML-Library: amoeba.cma

These functions are used to store and extract Amoeba strcutures and values to and from Amobea
buffers in a mechine independet way.

Buffer Put Functions

Integer values, 16 and 32 bit wide, are stored with the but put int16 and the buf put in32 func-
tions. OCaML integers can be stored with the buf put int function. They expect the buffer buf
, the start position pos within the buffer and the int value int16 or int32 or int as their argu-
ments.
Strings can be stored with the buf put string function at the specified start position in the given
buffer. Each string is closed with the null character ’\000’.
Ports, private parts and capabilities and capability sets are stored with the buf put port, buf put priv,
buf put cap and buf put capset functions.
Rights can be stored in two different ways using the buf put right bits and buf put rights bits
functions.
All functions return the next position within the buffer, or raise the Buf overflow exception.

PROGRAMMING INTERFACE

[newpos: int] = buf put int16 ∼buf : buffer→
∼pos : int→
∼int16 : int

[newpos: int] = buf put int32 ∼buf : buffer→
∼pos : int→
∼int32 : int

[newpos: int] = buf put int ∼buf : buffer→
∼pos : int→
∼int : int

[newpos: int] = buf put string ∼buf : buffer→
∼pos : int→
∼str : string

[newpos: int] = buf put port ∼buf : buffer→
∼pos : int→
∼port : port

[newpos: int] = buf put priv ∼buf : buffer→
∼pos : int→
∼priv : privat

[newpos: int] = buf put cap ∼buf : buffer→
∼pos : int→
∼cap : capability

ML-LIBRARY: AMOEBA.CMA 111

[newpos: int] = buf put capset ∼buf : buffer→
∼pos : int→
∼cs : capset

[newpos: int] = buf put right bits ∼buf : buffer→
∼pos : int→
∼right : int

[newpos: int] = buf put rights bits ∼buf : buffer→
∼pos : int→
∼rights : rights bits

Buffer Get Functions

Integer values, 16 and 32 bit wide, are extracted from buffers using the but get int16 and the
buf get in32 functions. Ordinary OCaML integers can be extracted with the buf get int function.
They expect the buffer buf and the start position pos within the buffer, and return the next buffer
position and the int value int16 or int32 or int.
Strings can be extracted with the buf get string function at the specified start position in the
given buffer. The functions expects a null character terminated string.
Ports, private parts and capabilities and capability sets are extracted with the buf get port,
buf get priv, buf get cap and buf get capset functions.
Rights can be extracted in two different ways using the buf get right bits and buf get rights bits
functions.
All functions return the next position within the buffer, or raise the Buf overflow exception.

PROGRAMMING INTERFACE

[newpos: int ∗
int16: int] = buf get int16 ∼buf : buffer→

∼pos : int

[newpos: int ∗
int32: int] = buf get int32 ∼buf : buffer→

∼pos : int

[newpos: int ∗
int: int] = buf get int ∼buf : buffer→

∼pos : int

[newpos: int ∗
str: string] = buf get string ∼buf : buffer→

∼pos : int

[newpos: int ∗
port: port] = buf get port ∼buf : buffer→

∼pos : int

ML-LIBRARY: AMOEBA.CMA 112

[newpos: int ∗
priv: privat] = buf get priv ∼buf : buffer→

∼pos : int

[newpos: int ∗
cap : capability] = buf get cap ∼buf : buffer→

∼pos : int

[newpos: int ∗
cs: capset] = buf get capset ∼buf : buffer→

∼pos : int

[newpos: int ∗
right: int] = buf get right bits ∼buf : buffer→

∼pos : int

[newpos: int ∗
rights: rights bits] = buf put rights bits ∼buf : buffer→

∼pos : int

File utils

There are some functions to read and write Amoeba types in an operating system and machine
independent way to and from files.

PROGRAMMING INTERFACE

[status ∗
cap] = read cap filename: string

[status] = write cap filename: string→
cap: capability

Module Dependencies

➤ Amoeba
➤ Bytebuf
➤ Capset
➤ Os
➤ Int32

ML-LIBRARY: AMOEBA.CMA 113

Module: Cache ML-Library: amoeba.cma

Generic cache module. Provides a fixed table cache. The fixed table is treated like a circular buffer,
therefore if filled up, the oldest entry is overwritten. Seraching is done from the newest entry downto
the oldest.
Assumption: the cache is mostly filled up. It’s possible to invalidate (remove) a cache entry.

PROGRAMMING INTERFACE

type (’a,’b) cache entry = { cache key : ’a ;
cache data : ’b }

type (’a,’b) t = { mutable cache size : int ;
mutable cache head : int ;
mutable cache hit : int ;
mutable cache miss : int ;
mutable cache table : ((’a,’b) cache entry) option array }

[(’a,’b) t] = create ∼size : int

[unit] = add ∼cache : (’a, ’b) t→
∼key : ’a→
∼data : ’b

[’b] = lookup ∼cache : (’a, ’b) t→
∼key : ’a

[unit] = invalidate ∼cache : (’a, ’b) t→
∼key : ’a

ML-LIBRARY: AMOEBA.CMA 114

Module: Cap env ML-Library: amoeba.cma

[Environment capabilities ≡ local named capabilities]
Environment capabilities like the root directory capability or the tty server capability, can be extracted
either in native Amoeba from the process environment, or under Unix from the user shell environment
variables.
Suppose the case the VAM is running under Unix, and a VAM program want to know his directory
root capability, the user must export the shell environment variable with the capability in the common
ASCII representation (for example in the shell profile file):

ROOTCAP="a1:de:14:f:1d:cf/1(ff)/29:51:4b:0:ba:bb"
export ROOTCAP
or
ROOTCAP=/unix/amoeba/dns/.servercap
export ROOTCAP # Get the capability from a UNIX file
TTYCAP=/server/tty
export TTYCAP # Lookup the cap from the directory server

It’s also possible to give these environment variables an absolute path name for a file, which holds the
capability (stored with the buf put cap/write cap function).
The path name must be preceeded by the ’/unix’ prefix to indicate a UNIX path, else the ca-
pability is lookuped from a directory server (DNS). Note: to avoid variable name conflicts
the UNIX name of the environment variable ends with the CAP specifier. In VAM/Amoeba,
this endings is recognized and elimintaed, and you can lookup the Amoeba environment
variable name without this ending.
Within the VAM program, the function get env cap can be used to extract the capability. In addition to
the get env cap function, there is a put env cap function to create or change environment variables -
but only in the context of the current program. To perform this task, an environment name-capability
hash is used.
Additionally, there are functions to resolve a path name to either an UNIX or an Amoeba path.

PROGRAMMING INTERFACE

[status ∗
capability] = get env cap envname: string

[status] = put env cap envname: string→
cap: capability

type path arg = Amoeba path of string
| Unix path of string

[path arg] = path resolve path

ML-LIBRARY: AMOEBA.CMA 115

Module: Capset ML-Library: amoeba.cma

Amoeba capability set utilities.

cs singleton
Convert a capability to a cap set.

cs goodcap
Get a useable capability from a capset, and retrun this cap. Returns the first capability in
the set for which std info returns STD OK. If there are no caps in the set for which std info
returns STD OK, then the last cap in the set is returned and the err status STD INFO.

cs to cap
Get a capability from a capset giving preference to a working capability. If there is only one
cap in the set, this cap is returned. If and only if there is more than one, try std info on each
of them to obtain one that is useable, and return this one. If none of the multiple caps work,
the last one is returned. Callers who need to know whether the cap is useable should use
cs goodcap(), above. Returns STD OK, unless the capset has no caps, in which case, returns
STD SYSERR.

cs copy
Return a fresh capset and copy the original contents.

PROGRAMMING INTERFACE

type suite = { mutable s object : capability ;
mutable s cuurent : bool }

type capset = { mutable cs initial : int ;
mutable cs final : int ;
mutable cs suite : suite array }

val nilcapset: capset

[capset] = cs singleton capability

[status ∗
capability] = cs goodcap capset

[status ∗
capability] = cs to cap capset

[capset] = cs copy capset

ML-LIBRARY: AMOEBA.CMA 116

Module: Circbuf ML-Library: amoeba.cma

Circular buffer package.
Circular buffers are used to transfer a stream of bytes between a reader and a writer, usually in differ-
ent threads. The stream is ended after the writer closes the stream; when the reader has read the last
byte, the next read call returns an end indicator. Flow control is simple: the reader will block when no
data is immediately available, and the writer will block when no buffer space is immediately available.
This package directly supports concurrent access by multiple readers and/or writers.

cb create
Allocates a new circular buffer of given size.

cb close
Closes circular buffer and set closed flag. May be called as often as you want, by readers and
writers. Once closed, no new data can be pushed into the buffer, but data already in it is still
available to readers.

cb full
Returns number of available data bytes. ∗∗ When closed and there are no bytes available,
return -1.

cb empty
Returns number of available free bytes. Return -1 if closed (this can be used as a test for
closedness).

cb putc
Puts one char into the cicrcular buffer. Returns 1 if OK, else -1 if closed.

cb puts
Puts n chars into the circular buffer. Returns number of written chars, or -1 if cb is closed.

cb getc
Gets the next byte from the circular buffer and returns it in char converted form. Returns
always true and CB content char if OK, else false,’\000’ if closed and no more data is avail-
able.

cb trygetc
Tries to get a char from the circular buffer. Returns false if closed or no chars are available.
May be interruptable.

cb gets
Gets between minlen and maxlen chars from circbuf. Returns a new string of length (minlen
< avail bytes < maxlen). Returns empty string if cb was closed.

cb putb
Puts one byte (integer) into the circular buffer. Returns 1 if OK, else -1 if closed.

cb putbn
Puts n bytes, stored in the generic buffer area, into the cb. Returns number of written bytes,
or -1 if cb is closed.

cb getb
Get next byte from the cb and returns it in integer converted form. Returns always true and
CB byte content if OK, else false if closed and no more data is available.

cb trygetb
Tries to get one byte.

cb getbn
Gets between minlen and maxlen bytes from circbuf and stores the data in the given generic
buffer. Returns -1 if cb closed.

ML-LIBRARY: AMOEBA.CMA 117

cb getsn
Gets between minlen and maxlen bytes from circbuf and stores the data in the specified
string area. Returns -1 if cb closed. String version.

cb putsn
Puts n bytes, stored in the given string arera, into the cb. Return number of written bytes,
or -1 if cb is closed. String version.

cb getp, cb getpdone
Gets the position for the next output byte in the buffer. Returns (-1,-1) if cb closed, (0,-1) if
no bytes available, else (num,pos) of available bytes, but limited to the upper bound of the
cb, and the position within the buffer. If nonzero return, a call to cb getpdone must follow to
announce how many bytes were actually consumed.

cb putp, cb putpdone
Gets the position for the next free byte in the buffer. Returns (-1,-1) if cb closed, (0,-1) if no
free bytes available, else (num,pos) of available bytes, but limited to the upper bound of the
cb, and the position within the buffer. If nonzero return, a call to cb putpdone must follow
to announce how many bytes were actually stored.

PROGRAMMING INTERFACE

[circular buf] = cb create ∼size : int

[unit] = cb close circular buf

[n: int] = cb full circular buf

[n: int] = cb empty circular buf

[int] = cb putc ∼circbuf : circular buf→
∼chr : char

[int] = cb puts ∼circbuf : circular buf→
∼str : string

[bool ∗
char] = cb getc circular buf

[bool ∗
char] = cb trygetc circular buf

[string] = cb gets ∼circbuf : circular buf→
∼minlen : int→
∼maxlen : int

[int] = cb getsn ∼circbuf : circular buf→
∼dst : string→
∼dstpos : int→
∼minlen : int→
∼maxlen : int

ML-LIBRARY: AMOEBA.CMA 118

[int] = cb putsn ∼circbuf : circular buf→
∼src : string→
∼srcpos : int→
∼len : int

[int] = cb putb ∼circbuf : circular buf→
∼byte : int

[int] = cb putbn ∼circbuf : circular buf→
∼dst : buffer→
∼dstpos : int→
∼len : int

[bool ∗
int] = cb getb circular buf

[int] = cb getbn ∼circbuf : circular buf→
∼src : buffer→
∼srcpos : int→
∼minlen : int→
∼maxlen : int

[num: int ∗
pos: int] = cb getp circular buf

[unit] = cb getpdone circular buf→
int

[num: int ∗
pos: int] = cb putp circular buf

[unit] = cb putpdone circular buf→
int

ML-LIBRARY: AMOEBA.CMA 119

Module: Cmdreg ML-Library: amoeba.cma

This file contains the list of first and last command codes assigned to each registered server. Only
registered servers are listed. If you wish to register a new servers then email to sci@bsslab.de with
your request for registration. The set of error codes is the negative of the command codes. Note that
the RPC error codes are in the range RESERVED FIRST to RESERVED LAST.
Registered commands take numbers in the range 1000 to (NON REGISTERED FIRST - 1).
Developers may use command numbers in the range NON REGISTERED FIRST to (NON REGISTERED LAST
- 1) .
You should make all your command numbers relative to these constants in case they change in Amoeba
4.
Each server is assigned commands in units of 100. If necessary a server may take more two or more
consecutive quanta. Command numbers 1 to 999 are reserved and may NOT be used.
The error codes that correspond to these command numbers are for RPC errors. Command numbers
from 1000 to 1999 are reserved for standard commands that all servers should implement where rele-
vant.

ML-LIBRARY: AMOEBA.CMA 120

Module: Dblist ML-Library: amoeba.cma

Double linked circular list implementation.

ML-LIBRARY: AMOEBA.CMA 121

Module: Des48 ML-Library: amoeba.cma

ML implementation of the basic algortihms needed for port encryption.

ML-LIBRARY: AMOEBA.CMA 122

Module: Dir ML-Library: amoeba.cma

High level directory service stubs.

dir lookup
Returns the (status,capability) tuple for the directory lookup of name. The server capability
is an optional argument.

dir append
Append a new object capability under with the given name to the directory tree.

dir rename
Rename a directory entry.

dir set colmasks
This function sets the default column masks used when appending names with the dir/name
interface. It should be called when the masks as specified by the environment variable
SPMASK are not what we need.

dir delete
Delete a directory. Note: due to the fact that under Amoeba the directory and filesystemis
independent, only the directory table and the strucure is deleted, not the content!

dir create
Create a new directory for server ’server’. Returns the new directory capability set. This
capset can then appended somewhere in the directory tree.

dir open
UNIX like directory handling: ”open” a directory and return directory descriptor.

dir next
Get the next directory entry from the given directory descriptor.

dir close
Close the previously opend directory.

PROGRAMMING INTERFACE

[status ∗
capability] = dir lookup ∼root : capability→

∼name : string

[status] = dir append ∼root : capability→
∼name : string→
∼obj : capability

[status] = dir rename ∼dir : capability→
∼oldname : string→
∼newname : string

[unit] = dir set colmasks cols: int array→
len: int

ML-LIBRARY: AMOEBA.CMA 123

[status] = dir delete ∼root : capability→
∼name : string

[status ∗
newdir: capability] = dir create ∼server : capability

type dir row = { mutable dr name: string ;
mutable dr time: int ;
mutable dr cols: int array }

type dir desc = { mutable dir rows: dir row array ;
mutable dir curpos: int ;
mutable dir ncols: int ;
mutable dir nrows: int ;
mutable dir colnames: string array }

[status ∗
dir desc] = dir open ∼dir : capability

[dir row] = dir next ∼dirdesc : dir desc

[unit] = dir close ∼dirdesc : dir desc

ML-LIBRARY: AMOEBA.CMA 124

Module: Disk client ML-Library: amoeba.cma

Virtual disk server interface. The virtual disk server - either within the kernel or outside, manages
physical and logical disks (aka. partitions) together with Amoeba subpartitions (aka. vdisks).

disk info
This is the client stub for the disk info command. It returns a list of disk addr’s which are
tuples of (unit, firstblock, # blocks).

disk read
This is the client stub for the disk read command. Since reads may be bigger than fit in a
single transaction we loop doing transactions until we are finished. If it can read exactly
what was requested it succeeds. Otherwise it fails. No partial reads are done.

disk write
This is the client stub for the disk write command. Since writes may be bigger than fit in a
single transaction we loop doing transactions until we are finished.

PROGRAMMING INTERFACE

type disk info = { disk unit: int32 ;
disk firstblk: int32 ;
disk numblks: int32 }

[status ∗
disk info] = disk info srv: capability

[status] = disk read srv: capability→
∼start : int→ . first block /
∼num : int→ . number of blocks /
∼blksize : int→ . block size in bytes /
∼buf : buffer→ . buffer to write to /
∼pos : int . start positionin buf /

[status] = disk write srv: capability→
∼start : int→
∼num : int→
∼blksize : int→
∼buf : buffer→ . buffer to read from /
∼pos : int

Module dependencies

➤ Amoeba
➤ Bytebuf

ML-LIBRARY: AMOEBA.CMA 125

➤ Rpc
➤ Stderr
➤ Stdcom
➤ Buf
➤ Machtype

ML-LIBRARY: AMOEBA.CMA 126

Module: Ktrace ML-Library: amoeba.cma

Kernel and network trace client interface. Limited to maximal number of 32000 events.

ML-LIBRARY: AMOEBA.CMA 127

Module: Machtype ML-Library: amoeba.cma

This module enables usage of machine specific data types with fixed bit size in a machine independent
way, similar to OCaML’s Int32 and Int64 modules. Supported types:

Int8
Signed 8 bit integer type.

Int16
Signed 16 bit integer type.

Int32
Signed 32 bit integer type.

Int64
Signed 64 bit integer type.

Uint8,Word8
Unsigned 8 bit integer type.

Uint16,Word16
Unsingned 16 bit integer type.

Uint32,Word32
Unsigned 32 bit integer type.

Uin64,Word64
Unsigned 64 bit integer type.

All native OCaML artithemtic and logic operators are supported with integer, float and the machine
type:

Arithmetic operators
+, -, ∗, /

Logic operators
land, lor,lsl, lsr

PROGRAMMING INTERFACE Types

type int8 = <abstr>

type int16 = <abstr>

type int32 = <abstr>

type int64 = <abstr>

type uint8 = <abstr>

type uint16 = <abstr>

ML-LIBRARY: AMOEBA.CMA 128

type uint32 = <abstr>

type uint64 = <abstr>

type word8 = <abstr>

type word16 = <abstr>

type word32 = <abstr>

type word64 = <abstr>

type machtype id = Int8
| Int16
| Int32
| Int64
| Uint8
| Uint16
| Uint32
| Uint64
| Word8
| Word16
| Word32
| Word64

PROGRAMMING INTERFACE Type conversion

[int] = to int ’a

[’a] = of int int→
machtype id

[string] = to str ’a

[’a] = of str string→
machtype id

[string] = format string→
’a

[string] = to data ’a

[’a] = of data string→
machtype id

[int8] = int8 int

ML-LIBRARY: AMOEBA.CMA 129

[int16] = int16 int

[int32] = int32 int

[int8] = int8s string

[int16] = int16s string

[int32] = int32s string

[uint8] = uint8 int

[uint16] = uint16 int

[uint32] = uint32 int

[uint8] = uint8s string

[uint16] = uint16s string

[uint32] = uint32s string

[word8] = word8 int

[word16] = word16 int

[word32] = word32 int

[word8] = word8s string

[word16] = word16s string

[word32] = word32s string

[int] = int ’a

PROGRAMMING INTERFACE Buffer management

[pos: int] = buf put mach ∼buf : buffer→
∼pos : int→
∼mach : ’a

[pos: int ∗
’a] = buf get mach ∼buf : buffer→

∼pos : int→
∼mach : machtype id

ML-LIBRARY: AMOEBA.CMA 130

Module: Monitor ML-Library: amoeba.cma

Server Event Monitoring Module.
All event strings are referenced by a circular cache with the ’event’ function. A client can extract all
events from the cache with the ’event get’ function. An event can only be read one time.
Each module or the whole program can start a separate server thread with the ’event server’ function
together with the event structure, previously created with the ’event init’ function (== ’event start’).
The ’event init’ functions expect the number of cache entries and the portname string, which is con-
verted in a private port. This port name must also be given to the ’event get’ function.

ML-LIBRARY: AMOEBA.CMA 131

Module: Name: ML-Library: amoeba.cma

Directory tree name services. This module provides a simple way for server to publish theit server ca-
pabilities in the Amoeba directory system and for clients to lookup these capabilities simply providing
the pathname.

PROGRAMMING INTERFACE

[status ∗
capability] = name lookup path: string

[status] = name append ∼name : string→
∼cap : capability

[status] = name delete path: string

ML-LIBRARY: AMOEBA.CMA 132

Module: Proc ML-Library: amoeba.cma

Low level process execution module. This is the most complicated interface in this system.

ML-LIBRARY: AMOEBA.CMA 133

Module: Rpc ML-Library: amoeba.cma

Programmers API for Amoeba Remote Procedure Calls, building the core concepts for distributed pro-
gramming and environments.

getreq
The server side. The server starts requetsing on the specified server port (private port).
After a client send a transaction, this function returns with the request header and the
actual amount of data stored in the request buffer. Because the RPC is symmetrical, a putrp
must follow this function!

putrep
Send a reply upon a client rqeuest.

trans
Client side. Send a transaction to the server specified in the request header. The data buffer
contains request data or can be replaced with the nilbuf and request size = 0. After the
server responded, teh reply buffer is filled with the reply data (if any) and the reply trans-
action header is retruned together with the number of byted received in the reply buffer.

timeout
Specify the maximal time to lookup/search for a server. If a transaction can’t be trasnferred
in this time, the status of this operation is set to RPC NOTFOUND.

The XXXo functions support buffer offset specifiers (request and reply buffers).

PROGRAMMING INTERFACE

[stat: status ∗
repsize: int ∗
hdrrep: header] = trans (hdrreq:header ∗ bufreq:buffer ∗ reqsize:int ∗ bufrep:buffer ∗ bufsize:int)

[stat: status ∗
reqsize: int ∗
hdrreq: header] = getreq (portreq:port ∗ bufreq:buffer ∗ bufsize:int)

[stat: status] = putrep (hdrrep:header ∗ bufrep:buffer ∗ repsize:int)

[stat: status ∗
repsize: int ∗
hdrrep: header] = transo (req:header ∗ buffer ∗ size:int ∗ off:int ∗ rep:buffer ∗ size:int ∗ off:int)

[stat: status ∗
reqsize: int ∗
hdrreq: header] = getreqo (portreq:port ∗ bufreq:buffer ∗ bufsize:int ∗ bufoff:int)

[stat: status] = putrepo (hdrrep:header ∗ bufrep:buffer ∗ repsize:int ∗ bufoff:int)

[status] = timeout interval: int . interval in milli second units /

ML-LIBRARY: AMOEBA.CMA 134

Example

The following code shows a simple RPC example.

open Amoeba
open Rpc
open Cmdreg
open Stdcom
open Stderr
open Bytebuf
open Buf

(∗
∗∗ Standard restrict request. Returns the restricted capability
∗∗ of the object ’cap’ owned by the server.
∗)

let std restrict ∼cap ∼mask =
let bufsize = cap SIZE in
let buf = buf create bufsize in

if (cap.cap priv.prv rights = prv all rights)then
begin

let obj = prv number cap.cap priv in
let cap’ = {

cap port = cap.cap port;
cap priv =

prv encode ∼obj:obj
∼rights:mask
∼rand:cap.cap priv.prv random;

} in
std OK,cap’

end
else
begin

let Rights bits mask = mask in
let hdr req = {

h port = cap.cap port;
h priv = cap.cap priv;
h command = std RESTRICT;
h status = std OK;
h offset = mask;
h size = bufsize;
h extra = 0;
} in

let (err stat,size,hdr rep) = trans
(hdr req,nilbuf,0,buf,bufsize)

in

if(size > 0 && (hdr rep.h status = std OK)) then

ML-LIBRARY: AMOEBA.CMA 135

begin
let pos,cap restr = buf get cap ∼buf:buf ∼pos:0 in
(err stat,cap restr)

end
else if (err stat <> std OK) then

(err stat,nilcap)
else

(hdr rep.h status,nilcap)
end

In this example, the server port and the private field are taken from the given capability. After
the trans function returns, first the status of the RPC operation must be checked. If err=std OK,
the server response status returned in the reply header must be checked.

Module dependencies

➤ Amoeba
➤ Bytebuf

ML-LIBRARY: AMOEBA.CMA 136

Module: Stdcom ML-Library: amoeba.cma

Amoeba’s standard operation requests.

std info
Standard information rqeuest. Returns the server information string. The server capability
is specified with ’cap’.

std status
Standard status request. Returns the server status string (statistical informations). The
server capability is specified with ’cap’.

std exit
Standard exit request. Send the server the exit command. The server capability is specified
with ’cap’.

std destroy
Destroy a server object, for example a memory segment.

std touch
Touch a server object. This is a NOP, but increments the live time of an object, ify any.

std age
Age all objects of a server (decrements the live time of all objects and destroys objects with
live time equal to zero). Only allowed with the servers super capability and prv all rights!

PROGRAMMING INTERFACE

[status ∗
string] = std info ∼cap : capability→

∼bufsize : int

[status ∗
string] = std status ∼cap : capability→

∼bufsize : int

[status] = std exit ∼cap : capability

[status] = std destroy ∼cap : capability

[status] = std touch ∼cap : capability

[status] = std age ∼cap : capability

ML-LIBRARY: AMOEBA.CMA 137

Module: Stdcom2 ML-Library: amoeba.cma

Some more standard requests.

std restrict
Standard restrict request. Returns the restricted capability of the object ’cap’ owned by the
server.

std exec
Standard exec request. Execute a string list on a server, for example MLor Forth scripts.
The reply is returned in a string, too.

std set params
Set parameters for server administration. Format of argument list: <name>,<value>

std get params
Get parameter list from specified server. Returns string tuple format: <name>,<range and
unit>,<desc>,<value>

PROGRAMMING INTERFACE

[status ∗
rcap: capability] = std restrict ∼cap : capability→

∼mask : rights bits

[status ∗
string] = std exec ∼srv : capability→

∼args : string list

[status] = std set params ∼srv : capability→
∼args : (string ∗ string) list

[status ∗
(string∗string∗string∗string) list] = std get params ∼srv : capability

ML-LIBRARY: AMOEBA.CMA 138

Module: Stderr ML-Library: amoeba.cma

Contains defintions for Amoeba standard error codes and a descriptive name list mapping error num-
bers with strings.

PROGRAMMING INTERFACE

[string] = err why status

ML-LIBRARY: AMOEBA.CMA 139

Module: Stdobjtypes ML-Library: amoeba.cma

This file contains the definitions of the symbols used by servers in their stdinfo string to identify the
object. Note: only objects are identified this way. Servers for the object describe themselves with a
longer string at present, although they could be of the object type server and return S followed by the
symbol of the type of object.

let objsym TTY = "+" (∗ TTY ∗)
let objsym BULLET = "-" (∗ Bullet File ∗)
let objsym AFS = objsym BULLET (∗ AFS File ∗)
let objsym DIRECT = "/" (∗ Directory ∗)
let objsym DNS = objsym DIRECT (∗ Directory ∗)
let objsym KERNEL = "%" (∗ Kernel Directory ∗)
let objsym DISK = "@" (∗ Disk, Virtual or Physical ∗)
let objsym PROCESS = "!" (∗ Process, Running or not ∗)
let objsym PIPE = "|" (∗ Pipe ? ∗)
let objsym RANDOM = "?" (∗ Random Number Generator ∗)

ML-LIBRARY: AMOEBA.CMA 140

Module: Signals ML-Library: amoeba.cma

This module provides a simple implementation of Amoeba leightweighted signal concepts. Currently
only the sig TRANS and the sig INT signals are supported. The first is used ins erver to catch client
RPC interrupt signals, the second is used to catch user interrupt signals from the UNIX shell (CTRL-
C).
The sig catch function installs a signal handler thread of the specified signal for only one thread. The
function argument holds the signal number.

PROGRAMMING INTERFACE

val sig TRANS: int

val sig INT: int

[unit] = sig catch ∼signum : int→
∼handler : (int→unit)

ML-LIBRARY: AMOEBA.CMA 141

Module: Virtcirc ML-Library: amoeba.cma

Virtual circuit module, comparable with named pipes under UNIX. Implemented with two circular
buffers and a client and server loop thread.

vc create
Create a new virtual circuit. Full duplex capable. This function starts both the vc client and
the vc server thread.

vc close
Close one or both circular buffers.

vc reads
Read a string with given maximal length from the virtual circuit, but at least minlen char-
acters.

vc readb
Reads instead in a generic buffer at position pos (maximal length len).

vc writes
Write a string into the virtual circuit ring.

vc writeb
Write to the vc from a buffer starting at position pos and length len.

vc getp, vc getpdone
Gets a circular buffer pointer to fetch data from = cb getp vc.vc cb.(client)

vc putp, vc putpdone
Gets a circular buffer pointer to store data in = cb putp vc.vc cb.(server)

PROGRAMMING INTERFACE

[virt circ] = vc create ∼iport : port→
∼oport : port→
∼isize : int→
∼osize : int

[unit] = vc close virt circ→
which: int

[int] = vc reads virt circ→
∼str : string→
∼pos : int→
∼len : int

[int] = vc readb virt circ→
∼buf : buffer→
∼pos : int→
∼len : int

[int] = vc writes virt circ→

ML-LIBRARY: AMOEBA.CMA 142

∼str : string→
∼pos : int→
∼len : int

[int] = vc writeb virt circ→
∼buf : buffer→
∼pos : int→
∼len : int

[num: int ∗
pos: int] = vc getp virt circ

[unit] = vc getpdone virt circ→
int

[num: int ∗
pos: int] = vc putp virt circ→

int

[unit] = vc putpdone virt circ→
int

ML-LIBRARY: AMOEBA.CMA 143

ML-Library: buffer.cma VAM Development System

VAM DEVELOPMENT SYSTEM 144

Module: Bytebuf ML-Library: buffer.cma

Low level Buffer management.

Basic functions

The buf physical function creates a new master buffer of the specified size. Physical memory
space will be allocated by this function. The buf logical function derives a slave buffer from a
master buffer. The slave buffer is a window from the master buffer. No additional data memory
space will be allocted by this function. The buf copy creates a new physical buffer and copies the
content of the source buffer src starting at position pos of size size to the new one.
There are several get and set functions to extract or store values into a buffer at a specific posi-
tion.

PROGRAMMING INTERFACE

exception Buf overflow

external buf physical: size : int→
buffer
= ”ext buf physical”

external buf logical: src: buffer→
pos: int→
size: int→
buffer
= ”ext buf logical”

external buf copy: src: buffer→
pos: int→
size: int→
buffer
= ”ext buf copy”

external buf get: buffer→ . buf /
int→ . pos /
int
= ”ext buf get”

external buf set: buffer→ . buf /
int→ . pos /

int→ . byte /
()
= ”ext buf set”

external buf gets: buffer→ . buf /
int→ . pos /
int→ . len /

string
= ”ext buf gets”

ML-LIBRARY: BUFFER.CMA 145

external buf sets: buffer→ . buf /
int→ . pos /
string→ . str /

()
= ”ext buf sets”

external buf getc: buffer→ . buf /
int→ . pos /
char
= ”ext buf getc”

external buf setc: buffer→ . buf /

int→ . pos /

char→ . char /
()
= ”ext buf setc”

external buf len: buffer→
int
= ”ext buf len”

String module compatibility

To make compatibility the Bytebuf compatible with the String module, there are several func-
tions to convert strings to buffers and vice versa, to get and set values in a buffer, and various
blit functions known from the string module.

PROGRAMMING INTERFACE

[string] = buf tostring buf: buffer→
pos: int→
len: int

[buffer] = buf ofstring str: string→
pos: int→
len: int

val nilbuf: buffer

[int] = length buffer

[char] = get buf: buffer→
pos: int

[unit] = set buf: buffer→
pos: int→

ML-LIBRARY: BUFFER.CMA 146

c: char

[buffer] = create size: int

[buffer] = copy buffer

[buffer] = sub buf: buffer→
∼pos : int→
∼len : int

[string] = string of buf buffer

[buffer] = buf of string string

external blit bb: src: buffer→
src pos: int→
dst: buffer→
dst pos: int→
len: int→
unit
= ”ext blit bb”

external blit bs: src: buffer→
src pos: int→
dst: string→
dst pos: int→
len: int→
unit
= ”ext blit bb”

external blit sb: src: string→
src pos: int→
dst: buffer→
dst pos: int→
len: int→
unit
= ”ext blit bb”

external fill: buffer→
pos: int→
len: int→
int→
unit
= ”ext fill”

external buf info: buffer→
string
= ”ext buf info”

ML-LIBRARY: BUFFER.CMA 147

ML-Library: ddi.cma VAM Development System

VAM DEVELOPMENT SYSTEM 148

Module: Ddi ML-Library: ddi.cma

Device Driver Interface for Amoeba. Only implemented in the vamrun version running on the top of a
native Amoeba kernel (AMOEBA RAW).

IO Port Management

To access IO ports, the IO port address must be registered by the kernel. Not registered IO access
causes a memory violation error.

io check region
Check an IO port region, starting at address ’start’ and with an extent of ’size’ bytes. If
status std Ok was returned, this IO region can be mapped in the current process. The
system capability is currently the root capability of the kernel.

io map region
Map in an already checked IO port region. After this (successfull) call, IO ports can
be read and written using the funtions below. Access to IO ports not mapped in the
process address space raises a memory access violation exception. The system capability
is currently the root capability of the kernel.

io unmap region
Unmap a previously mapped IO port region, starting at address ’start’ and with an
extent of ’size’ bytes.

PROGRAMMING INTERFACE

[status] = io check region ∼start : int32→
∼size : int32→
∼syscap : capability

[status] = io map region ∼start : int32→
∼size : int32→
∼devname : string→
∼syscap : capability

[status] = io unmap region ∼start : int32→
∼size : int32→
∼syscap : capability

IO Port Access

To access IO ports, the IO port address must be registered by the kernel. Not registered IO access
causes a memory violation error.

ML-LIBRARY: DDI.CMA 149

out byte
Write a byte value to an IO port. The port address must be mapped in the process.

in byte
Read a byte value from an IO port. The port address must be mapped in the process.

PROGRAMMING INTERFACE

[unit] = out byte ∼addr : int32→
∼data : int32

[int32] = in byte ∼addr : int32

Timer

Software timers.

timer init
The timer init function initializes and installs a new software interval timer. The user
specified event ’ev’ will be wakedup after the time interval period in unit (SEC, MIL-
LISEC, MICROSEC) relative to the current system time has elapsed. If the once argu-
ment is equal zero, the timer function will be called periodically, else only one time.

timer reinit
Same as above, but timer settings of an already installed timer handler can be modified.
If the specified timeout value is zero, the timer handler is removed. Note: before a
process exits, it must currently remove the installed timer handler before exiting!

timer await
Wait for the timer event Returns negative value if the call was interrupted.

timer create event
Create a timer event.

PROGRAMMING INTERFACE

type timer event = Thread.thread event

[timer event] = timer create event ()

[int] = timer init ∼event : timer event→
∼interval : int→
∼uni : time unit→
∼once : bool

ML-LIBRARY: DDI.CMA 150

[int] = timer reinit ∼event : timer event→
∼interval : int→
∼uni : time unit→
∼once : bool

[int] = timer await timer event

Module dependencies

➤ Amoeba
➤ Thread
➤ Machtype

ML-LIBRARY: DDI.CMA 151

ML-Library: server.cma VAM Development System

VAM DEVELOPMENT SYSTEM 152

Content ML-Library: server.cma

This package contains modules for building the AFS and DNS servers. The AFS server provides the
Atomic Filesystem service for the Amoeba system, and the DNS server provides a generic object nam-
ing and capability mapping service with tree structures, aka. the directory server. Additionally it
provides modules of the client interfaces for these services.

➤ Module: Afs common (P. 154)

➤ Module: Afs client (P. 156)

➤ Module: Afs server (P. 160)

➤ Module: Afs server rpc (P. 166)

➤ Module: Afs cache (P. 167)

➤ Module: Dns common (P. 181)

➤ Module: Dns client (P. 184)

➤ Module: Dns server (P. 185)

➤ Module: Dns server rpc (P. 192)

➤ Module: Om (P. 197)

➤ Module: Vamboot (P. 199)

ML-LIBRARY: SERVER.CMA 153

Module: Afs common ML-Library: server.cma

This module contains values common to the client and server interface.

AFS requests

PROGRAMMING INTERFACE

val afs CREATE: command . create a file /

val afs DELETE: command . delete a part of a file /

val afs FSCK: command . check filesystem /

val afs INSERT: command . insert data in an unlocked file /

val afs MODIFY: command . modify data of an unlocked file /

val afs READ: command . read data from a file /

val afs SIZE: command . get the file size /

val afs DISK COMPACT: command . compact the disk /

val afs SYNC: command . flush all caches /

val afs DESTROY: command . destroy a file /

val afs REQBUFSZ: int . size of server request buffer /

Rights

PROGRAMMING INTERFACE

val afs RGT CREATE: rights bits

val afs RGT READ: rights bits

val afs RGT MODIFY: rights bits

val afs RGT DESTROY: rights bits

val afs RGT ADMIN: rights bits

ML-LIBRARY: SERVER.CMA 154

val afs RGT ALL: rights bits

Commit flags

PROGRAMMING INTERFACE

val afs UNCOMMIT: int

val afs COMMIT: int

val afs SAFETY: int

Module Dependencies

➤ Amoeba
➤ Cmdreg
➤ Stderr
➤ Stdcom

ML-LIBRARY: SERVER.CMA 155

Module: Afs client ML-Library: server.cma

Client user interface for the Atomic Filesystem Server AFS .

File requests

The following table shows the client file requests and the required rights for these operations.
The meaning of the function arguments are explained.
First, a file object is created with the afs create function. The new capability is returned. If
the file is still unlocked (see below), the file can be modificated with the functions afs modify,
afs insert and afs delete.
The commit flag can have the following values:

afs UNCOMMIT
Don’t commit (= lock) the file after the current operation. Further modifications of the
file are still possible untill the file will be locked with a following request.

afs COMMIT
Commit (=lock) the file after this operation. No further modifications of the file data are
possible. But still pending cache flushes are not performed.

afs SAFETY
Same as above, but the file data is written through the cache. The file is sync’ed with
the disk.

A modification request on a locked file will result in a physical copy with a new capability re-
turned and the desired modifications.
It’s possible to write a file with one request afs CREATE, but usually several afs MODIFY re-
quest are used to write the file in medium sized fragments.
An afs MODIFY request with size=0 can be used to lock a file only.

ML-LIBRARY: SERVER.CMA 156

(TAB. 17)
Request Function arguments Required Rights
afs CREATE Create a new
file object

cap capability of an already
existing file or super cap
commit Commit flag buf
the data buffer size initial
size

afs RGT CREATE

afs MODIFY Modify the
content of an unlocked file
(overwrite or/and append)

cap capability of the file ob-
ject offset file offset from
where to modify data size
size of modified data

afs RGT MODIFY

afs INSERT Insert a part
into the content of an un-
locked file

see above afs RGT MODIFY

afs DELETE Delete a part
of the content of an un-
locked file

see above afs RGT MODIFY

afs READ Read the con-
tent from a file object

offset file offset where to
start reading data buf
buffer to read data in size
data size to be read

afs RGT READ

afs DESTROY Destroy a
file object

cap the capability of the file
object to be destroyed

afs RGT DESTROY

afs SIZE Get the size of a
file object

- afs RGT READ

PROGRAMMING INTERFACE

[err: status ∗
size: int] = afs size ∼cap : capability

[err: status ∗
newfile: capability] = afs delete ∼cap : capability→

∼offset : int→
∼size : int→
∼commit : int

[err: status ∗
newcap: capability] = afs create ∼cap : capability→

∼buf : buffer→
∼size : int→
∼commit : int

[err: status ∗
bytes: int] = afs read ∼cap : capability→

∼offset : int→
∼buf : buffer→

ML-LIBRARY: SERVER.CMA 157

∼size : int

[err: status ∗
newcap: capability] = afs modify ∼cap : capability→

∼buf : buffer→
∼size : int→
∼offset : int→
∼commit : int

[err: status ∗
newcap: capability] = afs insert ∼cap : capability→

∼buf : buffer→
∼size : int→
∼offset : int→
∼commit : int

[err: status] = afs destroy ∼cap : capability

The following example shows the creation of a file:

let b = buf create 50000 in
...

let stat,cap’ = afs create ∼cap:supercap
∼buf:b
∼size:5000
∼commit:afs UNCOMMIT in

if (stat <> std OK) then
failwith "AFS create failed";

...
let stat’,cap’’ = afs modify ∼cap:cap’

∼buf:b ∼size:45000
∼offset:5000
∼commit:afs SAFETY in

if (stat’ <> std OK) then
failwith "AFS modify failed";

...

Administration requests

There are some administration requests to control caches, the file system and the server itself.
The following table shows the available requests.

ML-LIBRARY: SERVER.CMA 158

(TAB. 18)
Request Function arguments Required Rights
afs SYNC Flush all file
caches

server capability of an al-
ready existing file or the
super capability

afs RGT READ

afs DISK COMPACT Com-
pact the file system. Re-
move fragmented wholes.

server super capability afs RGT ADMIN

afs FSCK Check the file
system integredity.

see above afs RGT ADMIN

std EXIT Shutdown the
server.

see above afs RGT ADMIN

PROGRAMMING INTERFACE

[err: status] = afs sync ∼server : capability

[err: status] = afs fsck ∼server : capability

[err: status] = afs disk compact ∼server : capability

ML-LIBRARY: SERVER.CMA 159

Module: Afs server ML-Library: server.cma

Data structures and types

A file object entry bound by the file server inode table must have one of states given by the type
afs file state. Each file owns an inode descriptor structure afs inode and the file structure afs file
with all necessary informations about the file.
The main AFS structure: afs super. This is the all known super structure with basic informa-
tions about the file system. This structure is generated by the server with fixed informations
from the super block of the filesystem (name, nfiles, ports, size), and dynamically from the inode
table (nfiles, nused, freeobj, nextfree).
The server structure afs server must be filled by the main (user supplied) server module. It ref-
erences server function supplied in higher server layers.
The server is responsible for managing the file table, for example caching, reading and writing of
file changes. This is not part of this module!

afs read file
Read a file specified with his objnum (index) number. Physical reads only if not cached
already (and a cache was implemented).

afs modify file
Modify data of a file. In the case, the (offset+size) fragment exceeds the current filesize,
the filesize must be increased with afs modify size first.

afs modify size
Modify the size of the file object.

afs commit file
Commit a file to the disk. The flag argument specifies the way: immediately (afs SAFETY
) or later (afs COMMIT) by the cache module if any.

afs read inode
Read an inode structure from disk (higher layer implementation).

afs create inode
Create a new inode with initial the afs file structure. A true final flag indicates that the
file size is final and not initial (afs file with afs COMMIT/SAFETY flag set).

afs delete inode
Delete an inode (file); free used disk space, if any.

afs modify inode
Modify an inode, for example the ff live field was changed.

afs read super, afs sync, afs stat
Read the super structure, flush the caches (if any), create statistics informations.

afs age, afs touch
File object garbage collection: All file object known by the file server must be aged from
time to time. All files reaching the live time 0 must be destroyed. But only file object
nevermore used should be destroyed. Therefore, all file object still in used must be
touched. This operation sets the live time for theses files to the maximal live time.

afs exit
This function is called on server exit and must perform cleanups, if any.

ML-LIBRARY: SERVER.CMA 160

PROGRAMMING INTERFACE

val afs MAXLIVE: int . maximal obecjt livetime /

type afs file state = FF invalid . inode currently not used /

| FF unlocked . file currently unlocked /

| FF locked . file committed and written to disk /afs SAFETY/ /

| FF committed . file committed, but not synced /afs COMMIT/ /

type afs inode = { mutable fi daddr:int ; . File disk address [blocks] /
mutable fi ioff: int ; . File inode logical offset [bytes] /
mutable fi res: int } . Reserved disk space for unlocked files [bytes] /

type afs file = { mutable ff lock: Mutex.t ; . File lock /

mutable ff objnum: int ; . The directory index number /
mutable ff random: port ; . Random check number /
mutable ff time: int ; . Time stamp /

mutable ff live: int ; . Live time [0..MAXLIVETIME] /
mutable ff state: afs file state ;
mutable ff size: int ; . Size of the file [bytes] /
mutable ff inode: afs inode ; . Inode from higher layers /
mutable ff modified: bool } . modified afs file? /

type afs super = { mutable afs lock: Mutex.t ; . afs super lock /

mutable afs name: string ; . filesystem label /
mutable afs nfiles: int ; . Number of total inode entries = files /
mutable afs nused: int ; . Number of currently used files /
mutable afs freeobjnums: int ; . Free slots list /
mutable afs nextfree: int ; . Next free slot /
mutable afs getport: port ; . Private server port (supercap) /
mutable afs putport: port ; . Public server port /
mutable afs checkfield: port ; . Random checkfield /

mutable afs block size: int ; . Data blocksize [bytes] /
mutable afs nblocks: int } . Number of total data blocks /

type afs server = { mutable afs super: afs super ; . the super block /

mutable afs read file: fun ; . Read a file /
mutable afs modify file: fun ; . Modify a file /
mutable afs modify size: fun ; . Change the file size /
mutable afs commit file: fun ; . Commit the file /
mutable afs read inode: fun ; . Read an inode of a file /
mutable afs create inode: fun ; . Create a new inode for a file /
mutable afs delete inode: fun ; . Delete an inode; free disk space /
mutable afs modify inode: fun ; . Modified inode /
mutable afs read super: fun ; . Read the super structure /
mutable afs sync: fun ; . Flush all caches /
mutable afs stat: fun ; . Get server and filesystem statistics /
mutable afs age: fun ; . Age a file /
mutable afs touch: fun ; . Touch a file /
mutable afs exit: fun } . Things to do on exit /

[status] = afs server.afs read file ∼file : afs file→

ML-LIBRARY: SERVER.CMA 161

∼off : int→ . logical file offset in bytes /
∼size : int→ . size in bytes /
∼buf : buffer

[status] = afs server.afs modify file ∼file : afs file→
∼off : int→ . logical file offset in bytes /
∼size : int→ . size in bytes /
∼buf : buffer

[status] = afs server.afs modify size ∼file : afs file→
∼newsize : int . size in bytes /

[status] = afs server.afs commit file ∼file : afs file→
∼flag : int . commit flag /

[status ∗
afs file] = afs server.afs read inode ∼obj : int

[status] = afs server.afs create inode ∼file : afs file→
∼final : bool . file size final? /

[status] = afs server.afs delete inode ∼file : afs file

[status] = afs server.afs modify inode ∼file : afs file

[afs super ∗
status] = afs server.afs read super ()

[status] = afs server.afs sync ()

[status ∗
string] = afs server.afs stat ∼obj : int

[destroy: bool] = afs server.afs age ∼obj : int

[unit] = afs server.afs touch ∼file : afs file

[status] = afs server.afs exit ()

Internal Server functions

The following functions are used by higher layers of the file server supplied by the user. The
acquire file function must be called to get a file structure associated with the file object num-
ber. After this function call, the file object is locked untill the release file function is called.
Additionaly, this function flushes caches and commit files depending on the commit flag. The
get freeobjnum function is used to get a free file object number.

ML-LIBRARY: SERVER.CMA 162

PROGRAMMING INTERFACE

[status ∗
afs file] = acquire file ∼server : afs file→

∼obj : int

[status] = release file ∼server : afs server→
∼file : afs file→
∼flag : int

[newobjnum: int] = get freeobjnum afs super

Server request functions

These functions are used by higher levels to serve client requests. All sizes and offsets are in byte
units.
Requests modifying files must distinguish this two cases:

1. The file state = FF unlocked→ Modification is uncritical. All functions returning capabili-
ties return the old file capability.

2. The file state = FF locked→
I. Create a new file.
II. Copy the original content and do the modifications in the newly created file. The new
capability is returned.

afs req size
AFS server size request. Returns size of a file in byte units.

afs req create
AFS server create request. This function creates a new file. It expects a private field
from an already existing file or the super capability. It returns the capability of the new
created file object. The buffer content and the size is only initial if the commit flag is not
set.

afs req read
AFS server read request. This functions reads size bytes starting at the file offset off
into the buffer (always starting with position 0).

afs req modify
AFS server Modify request. This request modfies size bytes starting at file offset off.
This request can be used to append new content to the file.

afs req insert
AFS server Insert request. This request insert size bytes at file offset off in the file.

afs req delete
AFS server Delete request. This request deletes size bytes starting at file offset off and
decreases the file size.

afs req destroy
This request destroys a file object.

ML-LIBRARY: SERVER.CMA 163

afs req stat
Get statistical informations for a file and the file system. Only a valid file object capa-
bility is accepted here.

afs req sync
Flush all caches. Either the super capability or a valid file object capability is accepted.

afs req touch
Set the live time of a file object to the maximal livetime number.

afs req age
Age the live time of all currently reachable files. Files with livetime = 0 are destroyed.

PROGRAMMING INTERFACE

[status ∗
size: int] = afs req size ∼server : afs server→

∼priv : privat

[status ∗
newcap: capability] = afs req create ∼server : afs server→

∼priv : privat→
∼buf : buffer→ . initial content /
∼size : int→ . initial file size /
∼commit : int

[status ∗
numread: int] = afs req read ∼server : afs server→

∼priv : privat→
∼buf : buffer→
∼off : int→ . file offset <= file size /
∼size : int . requested size <= file size /

[status ∗
newcap: capability] = afs req modify ∼server : afs server→

∼priv : privat→
∼buf : buffer→
∼off : int→ . file offset <= filesize /
∼size : int→ . mod size /
∼commit : int

[status ∗
newcap: capability] = afs req insert ∼server : afs server→

∼priv : privat→
∼buf : buffer→
∼off : int→ . file offset <= filesize /
∼size : int→ . insert size /
∼commit : int

[status ∗

ML-LIBRARY: SERVER.CMA 164

newcap: capability] = afs req delete ∼server : afs server→
∼priv : privat→
∼off : int→ . file offset <= filesize /
∼size : int→ . delete size /
∼commit : int

[status] = afs req destroy ∼server : afs server→
∼priv : privat

[status ∗
stat: string] = afs req stat ∼server : afs server→

∼priv : privat

[status] = afs req sync ∼server : afs server→
∼priv : privat

[status] = afs req touch ∼server : afs server→
∼priv : privat

[status] = afs req age ∼server : afs server→
∼priv : privat

Module Dependencies

➤ Amoeba
➤ Bytebuf
➤ Cmdreg
➤ Stderr
➤ Stdcom
➤ Mutex
➤ Afs common

ML-LIBRARY: SERVER.CMA 165

Module: Afs server rpc ML-Library: server.cma

This module provides a fully implemented server loop. Usually, this server loop sufficient.
Before this function can be called, a server structure afs server must be created. Additionaly, a sem-
pahore sema must be initialized. The main server function will wait on each server thread. After the
server thread exits, it increments this semaphore. The input and output buffer sizes are commonly
choosen with the afs REQBUFSZ value. The value nthreads tells this server threads how many server
threads at all were spawned.

PROGRAMMING INTERFACE

[status] = server loop ∼server : afs server→
∼sema : semaphore→
∼nthreads : int→
∼inbuf size : int→
∼outbuf size : int

ML-LIBRARY: SERVER.CMA 166

Module: Afs cache ML-Library: server.cma

This module provides a generic fixed size file cache related to the Atomic File System specifications.

➤ The file cache consists of several fixed size buffers, commonly a multiple of the disk block size.

➤ Parts of a file (this can be the real file data or an inode block) or the whole file is cached.

➤ Objects are identified by their unique object number.

➤ It’s assumed that files are stored continguesly on disk. That means: logical offset <=> disk
address ∗ block size + offset.

➤ Offsets start with number 0. Physical addresses are in blocks.

➤ All buffers from a cache object are stored in a list sorted with increasing offset.

All the single buffers are allocated on startup with the cache create function.
On a request, first the cache must be lookuped for an already cached file object. If there is no such
object, a new cache entry is created. Therefore, the cache read and cache write functions must always
provide the logical disk offset (when file offset = 0), and the current state of the file.
If a read request (obj,off,size) arrives, the desired fragment (off,size) is read into the cache, but the size
is enlarged to the cache buffer size and the offset is adjusted modulo to the buffer offset (as long as the
file end is not reached). The requested fragment is then copied into the user target buffer.
If the block file offset and size is already available in the cache, the desired data is only copied into the
buffer. If there are already parts of the request cached, only the missing parts are read into the cache.
Basic File Parameters and units:

➤ File Sizes: Logical, in bytes

➤ Disk addresses: Physical, in blocks [super.afs bock size]

➤ File offsets: Logical, in bytes

➤ Free/Used Clusters: Physical (both addr and size!), in blocks

➤ A File always occupy full blocks

PROGRAMMING INTERFACE Types and structure

type afs cache mode = Cache R . Write through the cache /
| Cache RW . Lazy read and write caching /

type afs cache state = Cache Empty . Empty cache buffer /
| Cache Sync . Cache buffer is synced with disk /

| Cache Modified . not synced with disk /

type fsc buf = { mutable fsb index: int ; . the index of this buffer /
mutable fsb buf: buffer ; . the data buffer /

ML-LIBRARY: SERVER.CMA 167

mutable fsb off: int ; . logical file offset [bytes] /
mutable fsb size: int ; . the real amount of cached data [bytes] /
mutable fsb state: afs cache state ; . state of the buffer /
mutable fsb lock: Mutex.t } . buffer lock /

type fsc entry = { mutable fse objnum: int ; . Object number. Must be unique! /
mutable fse disk addr: int ; . physical object address [blocks] /
mutable fse disk size: int ; . physical object size [Bytes] /
mutable fse cached: int list ; . list of all cached buffers [index] /
mutable fse lastbuf: int ; . the last cached buffer [index] /
mutable fse written: (int ∗ int) list ; . list of already written bufs [LOFF,SI] /
mutable fse state: afs file state ; . state of the fileobject /
mutable fse live: int ; . cache object live time /
mutable fse lock: Mutex.t } . cache object lock /

type fsc cache = { mutable fsc size: int ; . numbers of buffers in cache /
mutable fsc block size: int ; . size of one buffer [bytes] /
mutable fsc buf size: int ; . the buffer array /

mutable fsc buffers: int list ; . list of all free buffers /
mutable fsc table: (int ∗ fsc entry) Hashtbl.t ; . obj buffer table /
mutable fsc read: <fun> ; . server suppiled disk read function /

mutable fsc write: <fun> ; . server supplied disk write function /

mutable fsc synced: <fun> ; . server supplied object-sync notify fun /

mutable fsc lock: Mutex.t ;
mutable fsc mode: afs cache mode ; . the cache mode /
mutable fsc stat: fsc stat } . cache statistics /

PROGRAMMING INTERFACE Cache management

[status ∗
fsc cache] = cache create ∼nbufs : int→ . number of buffers /

∼blocksize : int→ . blocksize of the filesystem [bytes] /
∼bufsize : int→ . buffer size [blocks] /
∼read : <fun>→
∼write : <fun>→
∼sync : <fun>→
∼mode : afs cache mode . the cache mode /

[unit] = cache compact ∼cache : fsc cache

[found: bool ∗
ce: fsc entry] = cache lookup ∼cache : fsc cache→

∼obj : int→ . unique object number /
∼addr : int→ . disk address or other /
∼size : int→ . file size /
∼state : afs file state . file state /

[unit] = cache release ∼cache : fsc cache→

ML-LIBRARY: SERVER.CMA 168

∼fse : fse entry

[status] = cache read ∼cache : fsc cache→ . cache /
∼fse : fsc entry→ . cache object /
∼buf : buffer→ . data buffer to read in /
∼off : int→ . logical file offset /
∼size : int . size of the desired fragment /

[status] = cache write ∼cache : fsc cache→ . cache /
∼fse : fsc entry→ . cache object /
∼buf : buffer→ . data buffer to write from /
∼off : int→ . logical file offset /
∼size : int . size of the fragment /

[status] = cache delete ∼cache : fsc cache→
∼fse : fsc entry

[status] = cache commit ∼cache : fsc cache→
∼fse : fsc entry

[status] = cache sync ∼cache : fsc cache

[status] = cache age ∼cache : fsc cache

[stats: string] = cache stat ∼cache : fsc cache

ML-LIBRARY: SERVER.CMA 169

Module: Disk common ML-Library: server.cma

This module contains generic types and structures used by the virtual disk server only. Each virtual
disk is described by a disklabel structure, containing physical partition informations. Several physical
partitions and disks can form one virtual disk.

Partition structure

p firstblk
Gives the first physical block number of the partition.

p numblks
Gives the number of physical blocks allocated to this partition.

p piece
Each partition forms a part of exactly one virtual disk. p piece specifies the number of
the part that this partition is.

p many
p many specifies the total number of parts that make up the virtual disk.

p cap
is the capability of the virtual disk to which this partition belongs.

p sysid
system id string (aka. partition type name: ’Linux’,...)

Disklabel structure

d disktype
The type of this disk: Physical, Logical or Amoeba vdisk.

d geom
Physical disk geometry informations of the disk to which this partition belongs.

d ptab
Partition table array.

Virtual Disk structure

v name
The name of the virtual disk: ’vdisk:01’,...

v cap
The capability of this virtual disk. The server port is the private (getport) one!

v numblks
Virtual disk size: number of blocks of the virtual disk.

v many
How many physical partitions form this virtual disk? Number of entries in the v parts
array.

v parts
The physical partition array.

i physpart
Partition struct of the physical partition on which the sub-partition is found.

ML-LIBRARY: SERVER.CMA 170

i part
The number of the partition (on the physical disk) from which this piece of virtual disk
is taken.

i firstblk
Number of the first block in this partition available for use by clients.

i numblks
Number of blocks, starting from i firstblk, available for use by clients.

Disk device structure

dev host
The amoeba name of the host to which this device belongs to.

dev path
The UNIX device path.

dev blksize
Device block size in bytes.

dev geom
Device geometry informations. Either derived from Amoeba disklabels or user/system
suppield.

dev read/dev write
Device block read and write routines.

dev labels
All the disklabels found on this device.

PROGRAMMING INTERFACE Types and Structures

val d PHYS SHIFT: int . Physical disk block size in log2 bits /

val d PHYSBLKSZ: int . Physical disk block size in bytes /

val max PARTNS PDISK: int . maximum # of Amoeba partitions per physical disk /

val disk REQBUFSZ: int . RPC request/reply buffer size /

type part tab = { mutable p firstblk: int32 ;
mutable p numblks: int32 ;
mutable p piece: int16 ;
mutable p many: int16 ;
mutable p cap: capability ;
mutable p sysid: string }

type disktype = Disk physical of string
| Disk logical of string
| Disk amoeba of string

ML-LIBRARY: SERVER.CMA 171

type disklabel = { mutable d disktype: disktype ;
mutable d geom: pdisk geom ;
mutable d ptab: part tab array ;
mutable d magic: int32 ;
mutable d chksum : int32 }

type vpart = { mutable i physpart: part option ; . Virtual Disk Partition Table Structure /
mutable i part: int ;
mutable i firstblk: int ;
mutable i numblks: int }

type vdisk = { mutable v name: string ; . Virtual Disk Structure /
mutable v cap: capability ;
mutable v numblks: int ;
mutable v many: int ;
mutable v parts: vpart array }

type dev geom = { mutable dev numcyl: int ;
mutable dev numhead: int ;
mutable dev numsect: int }

type disk dev = { mutable dev host: string ;
mutable dev path: string ;
mutable dev blksize: int ;
mutable dev geom: dev geom ;
mutable dev read: <fun> ;
mutable dev write: <fun> ;
mutable dev labels: disklabel list }

val dev read: first: int→
size: int→
buf: buffer→
off: int→
status

val dev write: first: int→
size: int→
buf: buffer→
off: int→
status

ML-LIBRARY: SERVER.CMA 172

Module: Disk pc86 ML-Library: server.cma

This module implements the PC86 system dependent parts used by the virtual disk server.

ML-LIBRARY: SERVER.CMA 173

Module: Disk server ML-Library: server.cma

This module contains the implementation of the virtual disk server.

vdisk init
Initializes one disk:

1. Read physical (host) partition table.
2. Search for amoeba partitions, read the amoeba disklabels (subpartition table).
3. Create and initialize all virtual disk structures.

vdisk table
Create one huge virtual disk table containing vdisks, pdisks and ldisks.

1. The real virtual amoeba disks (with highest vdisk#).
2. Physical disks (objnum = vdisk#+1...)
3. Logical disks.

The capabilities of the 2. & 3. disks must recomputed with respect to their object numbers!
vdisk publish

Publish virtual disk capabilities (in directory dirname) somewhere in the DNS tree.
Note: the virtual disk structure (v cap) holds the private (get) port!

vdisk remove
Remove published vdisk caps. Should be done on server exit.

vdisk rw
Disk read and write function. The oepration depends on the h command field of the suppield
header structure. Returns STD OK if it could successfully read/write ”vblksz” ∗ ”num vblks”
bytes beginning at disk block ”start” from/to the virtual disk specified by ”priv” into/from
”buf”. Otherwise it returns an error status indicating the nature of the fault. The virtual
disk capability is supplied in the private field of the header structure and is checked before
the real operation.

vdisk info
This routine returns in ’buf ’ the disk partition startblock and size for each physical disk
partition comprising a virtual disk. The information was calculated at boot time and stored
in network byte order at initialisation time. hdr.h size is modified.

vdisk size
Returns STD CAPBAD if the capability was invalid or referred to a virtual disk with size
<= 0. Otherwise it returns STD OK and returns in ”maxblocks” the maximum number of
virtual blocks of size ”2̂”l2vblksz” that fit on the virtual disk specified by ”priv”. Returns
status and size.

vdisk getgeom
Returns disk geometry informations. Because the geometry information in 386/AT bus ma-
chines is not on the disk but in eeprom the fdisk program cannot get at it. Therefore we
provide this ugly hack to let it get it. hdr.h size is modified.

vdisk std info
Returns standard string describing the disk server object. This includes the size of the disk
in kilobytes. hdr.h size is modified.

ML-LIBRARY: SERVER.CMA 174

vdisk std restricts
This functions implements the STD RESTRICT command. There is only one rights bit any-
way so it isn’t too exciting. The new private part is stored in hdr.h priv.

PROGRAMMING INTERFACE

[status] = vdisk init ∼dev : disk dev→
∼disks : disk

[vdisk option array] = vdisk table disk

[status] = vdisk publish ∼disk table : vdisk option array→
∼dirname : string

[status] = vdisk remove ∼disk table : vdisk option array→
∼dirname : string

[status] = vdisk rw ∼hdr : header→
∼vblksz : int→
∼num vblks : int→
∼buf : buffer→
∼vdisks : vdisk option array

[status] = vdisk info ∼hdr : header→
∼buf : buffer→
∼vdisks : vdisk option array

[status ∗
size: int] = vdisk size ∼hdr : header→

∼vblksz : int→
∼vdisks : vdisk option array

[status] = vdisk getgeom ∼hdr : header→
∼buf : buffer→
∼vdisks : vdisk option array

[status] = vdisk std info ∼hdr : header→
∼buf : buffer→
∼vdisks : vdisk option array

[status] = vdisk std restrict ∼hdr : header→
∼rights : int→
∼vdisks : vdisk option array

Module dependencies

ML-LIBRARY: SERVER.CMA 175

➤ Amoeba
➤ Buffer
➤ Disk common

ML-LIBRARY: SERVER.CMA 176

Module: Disk server rpc ML-Library: server.cma

This module implements the rpc server loop of the virtual disk server. Several threads can be started
with this function.

disk table
The virtual disk table.

sema
Semaphore used to synchronosize the master server. After this service thread exited, the
semaphore is incremented.

nthreads
Total number of service threads.

inbuf size
Request buffer size. Usually equal to disk REQBUFSZ.

outbuf size
Reply buffer size. Usually equal to disk REQBUFSZ.

vblksize
Blocksize of the virtual disk server (not necessary the physical block size!).

PROGRAMMING INTERFACE

[unit] = server loop ∼disk table : vdisk option array→
∼sema : semaphore→
∼nthreads : int→
∼inbuf size : int→
∼outbuf size : int→
∼vblksize : int

EXAMPLE UNIX Virtual Disk Server

open Amoeba
open Stderr
open Unix
open Disk common
open Disk server
open Disk server rpc
open Bytebuf
open Printf
open Machtype

ML-LIBRARY: SERVER.CMA 177

open Buffer
open Sema
open Thread

let path = "/dev/da0"
let nl = print newline

let init () =
let blksize = d PHYSBLKSZ in
let disk fd = Unix.openfile path [O RDWR] 0 in
let hostname = Unix.gethostname () in

(∗
∗∗ Reads # size of blocks from disk starting at off block.
∗)
let read ∼first ∼size ∼buf ∼off =
try
begin

print string (sprintf "read: first =%d size =%d boff =%d"
first size off); nl ();

let off’ = first ∗blksize in
let size’ = size ∗blksize in
let n = lseek disk fd off’ SEEK SET in
if n <> off’ then

raise (Error std IOERR);
let n = readb disk fd buf off size’ in
if n <> size’ then

raise (Error std IOERR);
std OK

end
with | Error err → err

| → std IOERR
in

(∗
∗∗ Write # size of blocks to disk starting at off block.
∗)
let write ∼first ∼size ∼buf ∼off =
try
begin

print string (sprintf "write: first =%d size =%d boff =%d"
first size off); nl ();

let off’ = first ∗blksize in
let size’ = size ∗blksize in
let n = lseek disk fd off’ SEEK SET in
if n <> off’ then

raise (Error std IOERR);

let n = writeb disk fd buf off size’ in
if n <> size’ then

raise (Error std IOERR);

ML-LIBRARY: SERVER.CMA 178

std OK
end

with | Error err → err
| → std IOERR

in

let dev = {
dev host = "/hosts/" ĥostname;
dev path = path;
dev blksize = blksize;
dev read = read;
dev write = write;
dev labels = [];
dev geom = {dev numcyl = 0;

dev numhead = 0;
dev numsect = 0};

} in
let disks = {

pdisks = [];
vdisks = [];
ldisks = [] } in

let stat = vdisk init ∼dev:dev ∼disks:disks in
printf "disk init: %s" (err why stat);
nl ();
dev,disk fd,disks

let =
let dev,disk fd,disks = init () in
let vt = vdisk table disks in

(∗
let str = info vdisks dev disks in
print string str ;
∗)

let str = print vdisk table vt in
print string str;

let stat = vdisk publish vt "/hosts/develop" in
printf "vdisk publish: %s \n" (err why stat);

(∗
∗∗ Start service threads
∗)
let sem = sema create 0 in
let nthr = 4 in

printf "Starting service threads..."; nl();

for i = 1 to nthr

ML-LIBRARY: SERVER.CMA 179

do
ignore (thread create (fun () → server loop vt

sem
nthr
disk REQBUFSZ
disk REQBUFSZ
d PHYSBLKSZ) ());

done;
for i = 1 to nthr
do

sema down sem;
done;
Unix.close disk fd;
print string "bye.."; nl ();

ML-LIBRARY: SERVER.CMA 180

Module: Dns common ML-Library: server.cma

The DNS server : Directory and Name Service.
Common values and structures - both for servers and clients:

Requests and Rights

PROGRAMMING INTERFACE

val dns CREATE: command

val dns DISCARD: command

val dns LIST: command

val dns APPEND: command

val dns CHMOD: command

val dns DELETE: command

val dns LOOKUP: command

val dns SETLOOKUP: command

val dns INSTALL: command

val dns REPLACE: command

val dns GETMASKS: command

val dns GETSEQNR: command

val dns RGT DEL: int

val dns RGT MOD: int

dns CREATE
Create a directory. The request must supply the names of the columns. By counting this
name list, the server know the number of coulumns!

dns DISCARD
Destroy a directory. Only allowed if the directory is empty.
Required rights: dns RGT DEL

dns LIST
List a directory. The request returns a flattened representation of the number of columns,
the number of rows, the names of the columns, the names of the rows and the rights

ML-LIBRARY: SERVER.CMA 181

masks. Perhaps not all rows can delivered within one request. Following requests are
needed in this case.

dns APPEND
Append a row to an already existing directory. The row name and the new capability
must be delivered with this requets.
Required rights: dns RGT MOD

dns CHMOD
Change the rights masks of a directory row.
Required rights: dns RGT MOD

dns DELETE
Delete a row of a directory.
Required rights: dns RGT DEL

dns LOOKUP
Traverse a path as far as possible, and return the resulting capability set and the unre-
solved part of the path.

dns SETLOOKUP
Lookup rownames in a set of directories.

dns INSTALL
Update a set of directory entries. All entries have to be at this directory server or it
won’t work. Specified are capability sets for directories (simple names, no pathnames).
Moreover, an old capability ca be specified which has to be in the current capability set
for the update succeeded.
Required rights: dns RGT MOD

dns REPLACE
Replace a capability set. The name and the new capability set is specified.
Required rights: dns RGT MOD

dns GETMASKS
Return the rights masks in a row.

dns GETSEQNR
Return the sequence number (request counter) of the directory.

dns GETDEFAULTFS
Get the default file server capability, if any.

Functions

The path normalize function evaluates any ”.” or ”..” components in the path name, remove mul-
tiple ’/’ and evaluates relative paths. Returns the normalized path.

PROGRAMMING INTERFACE

[string] = path normalize ∼path : string

Module dependencies

ML-LIBRARY: SERVER.CMA 182

➤ Amoeba
➤ Cmdreg

ML-LIBRARY: SERVER.CMA 183

Module: Dns client ML-Library: server.cma

This is the DNS client module. It provides functions to lookup and modify existing directories, delete
or extract rows (directory entries).

PROGRAMMING INTERFACE

[rpc status: status ∗
cs: capset] = lookup ∼root : capset→

∼path : string

dns LOOKUP

This request is used to get a capability set for a path relative to a root directory. A root directory
can be any directory in the directory tree. The functions loops over the path components step by
step and resolve the path.
In each run, the next path component is the new parent directory for the next lookup (to another
DNS server).

Module dependencies

➤ Amoeba
➤ Bytebuf
➤ Capset
➤ Cmdreg
➤ Stderr
➤ Dns common

ML-LIBRARY: SERVER.CMA 184

Module: Dns server ML-Library: server.cma

This module provides the server side implementation of the DNS Directory and Name service. This
module provides structures and basic functions to build a DNS server.

Basic structures

fs server
The file server structure. DNS server objects (aka. directories) are saved as AFS files.
Therefore at least one file server must be known. In one copy mode, only files are read
and written from this server. In two copy mode, the directories are duplicated onto two
file servers. If one file servers craches, the other can be still used.

dns row
One row of a directory (= directory entry):

dns dir
One DNS table entry (= directory). All rows are stored in a double linked list.

dns super
The main DNS server structure: the all known super structure with fundamental infor-
mations about the DNS.

dns server
The server structure. The dns read dir and dns write dir functions are used to read and
write single directories. The dns create dir and dns delete dir functions are used to add
and delete directories. The dns read super function is used to read the super structure
of the file system. And finally, the dns sync function is used to flush all caches of the
server, if any. The implementation of these functions must be provided by higher levels
outside of this module.

PROGRAMMING INTERFACE

type dns mode = Dnsmode ONECOPY . Only one file server is used /

| Dnsmode TWOCOPY . Duplicated file server mode /

type fs state = FS down . File server is down /

| FS up . File server is up /

| FS unknown . Don’t know /

type fs server = { mutable fs cap: capability array ;
mutable fs state: fs state array ;
mutable fs default: int ; . The default file server /
mutable dns mode: dns mode } . DNS server mode /

type dns row = { mutable dr name: string ; . The row name /
mutable dr time: int ; . Time stamp /

mutable dr columns: rights bits array ; . The rights mask /

mutable dr capset: capset } . Row capability set of the object /

type dns dir state = DD invalid . Not used /

ML-LIBRARY: SERVER.CMA 185

| DD unlocked . New: Can be still modified /

| DD modified . Previously locked; now modified /

| DD locked . Written to disk: valid /

type dns dir = { mutable dd lock: Mutex.t ; . Directory lock /

mutable dd objnum: int ; . The directory index number /
mutable dd ncols: int ; . Number of columns /
mutable dd nrows: int ; . Number of rows in this directory /

mutable dd colnames: string array ; . The columns names /
mutable dd random: port ; . Random check number /
mutable dd rows: (dns row dblist) option ; . The rows /
mutable dd state: dns dir state ; . Status of the directory /

mutable dd time: int ; . Time stamp /

mutable dd live: int } . Live tim of object /

type dns super = { mutable dns lock: Mutex.t ;
mutable dns name: string ; . The server name/label /
mutable dns ndirs: int ; . Number of total table entries /
mutable dns nused: int ; . Number of used table entries /
mutable dns freeobjnums: int list ; . Free slots list /
mutable dns nextfree: int ; . Next free slot /
mutable dns getport: port ; . Private server port /
mutable dns putport: port ; . Public server port /
mutable dns checkfield: port ; . Private checkfield /

mutable dns ncols: int ; . Number of columns /
mutable dns colnames: string array ; . Column names /
mutable dns generic col mask: rights bits array ; . Column mask /

mutable dns fs server: fs server ; . File server used /

mutable dns block size: int } . Blocksize in bytes /

type dns server = { mutable dns super: dns super option ; . The super structure /
mutable dns read dir: fun ;
mutable dns modify dir: fun ;
mutable dns create dir: fun ;
mutable dns delete dir: fun ;
mutable dns read super: fun ;
mutable dns sync: fun ;
mutable dns stat: fun ;
mutable dns touch: fun ;
mutable dns age: fun ;
mutable dns exit: fun }

[dns dir ∗
status] = dns server.dns read dir ∼obj : int

[status] = dns server.dns modify dir ∼dir : dns dir

[status] = dns server.dns create dir ∼dir : dns dir

[status] = dns server.dns delete dir ∼dir : dns dir

[dns super ∗
status] = dns server.dns read super ()

ML-LIBRARY: SERVER.CMA 186

[status] = dns server.dns sync ()

[status ∗
string] = dns stat ()

[status] = dns server.dns touch ∼dir : dns dir

[used: bool ∗
time: int] = dns server.dns age ∼obj : int

[status] = dns server.dns exit ()

Values

The dns col bits array specifies the rights bits for each columns. Indead, only the first dns MAXCOLUMNS
array elements are used. The dns MAXLIVE value specifies the maximal live time of DNS ob-
jects (touch/age mechanism).

PROGRAMMING INTERFACE

val dns MAXLIVE: int

val dns col bits: rights bits array

Internal functions

The acquire dir function must be called before a client request can be handled. It returns the
directory structure and locks the directory. After the rqeuest is finished, the release dir must be
called to unlock the directory and to perfom pending write operations if any. The get dir function
returns the private field of a directory capability set.

PROGRAMMING INTERFACE

[dir: dns dir ∗
err: status] = acquire dir ∼server : dns server→

∼priv : privat→
∼req : rights bits

[unit] = release dir ∼server : dns server→
∼dir : dns dir

ML-LIBRARY: SERVER.CMA 187

[err: status ∗
priv: privat] = get dir ∼server : dns server→

∼dir cs : capset

Directory table management

dns search row
This functions searches a directory for the row given row name. It returns the row on
success, else None if the directory doesen’t have such a row name.

dns create dir
This function creates a new directory. the function returns the new directory structure
and teh status returned by the servers dns dir create function.

dns delete dir
Delete an empty directory. The servers dns delete dir function is called.

dns destroy dir
Delete a directory, no matter if empty or not. The servers dns delete dir function is
called.

dns create row
This function creates a new row.

dns append row
This function appends a newly created row to an existing directory.

dns delete row
Delete a row of an existing directory.

capset of dir
This function returns a capability set with one capability derived from the directory with
a private field encoded with the rights mask.

dns restrict
This function creates a restricted version of either a directory capability or of the object
from other server. The restricted capability is created with the new rights from the mask
value. For foreign objects, the std restrict function is used to fullfill the restriction.

PROGRAMMING INTERFACE

[row: dns row option] = dns search row ∼dir : dns dir→
∼name : string

[dir: dns dir ∗
err: status] = dns create dir ∼server : dns server

[err: status] = dns delete dir ∼server : dns server→
∼dir : dns dir

[err: status] = dns destroy dir ∼server : dns server→

ML-LIBRARY: SERVER.CMA 188

∼dir : dns dir

[err: status] = dns create row ∼name : string→
∼cols : rights bits array→
∼cs : capset

[err: status] = dns append row ∼server : dns server→
∼dir : dns dir→
∼row : dns row

[err: status] = dns delete row ∼server : dns server→
∼dir : dns dir→
∼row : dns row

[cs: capset] = capset of dir ∼super : dns super→
∼dir : dns dir→
∼rights : rights bits

[err: status ∗
cs restr: capset] = dns restrict ∼server : dns server→

∼cs orig : capset→
∼mask : rights bits

Client request handlers

dns req lookup
Traverse a path as far as possible, and return the resulting capability set and the rest
of the unresolved path fragment.

dns req list
List the content of a directory. returns a flattend representation of the number of
columns, the number of rows, the names of the columns, the names of the rows and
the right masks. The rows are returned in a (dr name,dr columns) tuple list.

dns req append
Append a row to an already existing directory. The name, right masks (cols), and the
initial capability must be specified.

dns req create
Create a new directory table entry.

dns req discard
Remove a directory from the table. Simple. Only allowed if the directory is empty. The
dns DELRGT rights are required to perform this operation.

dns req destroy
Destroy a directory from the table. Simple. Allowed for empty and not empty directories.
The dns DELRGT rights are required to perform this operation.

dns req chmod
Change the rights masks in a row. The dns MODRGT rights are needed.

dns req delete
Delete a row within a directory. The dns MODRGT rights are required to perform this
operation.

dns req replace

ML-LIBRARY: SERVER.CMA 189

Replace a capability set. The row name and new capability set must be specified. The
dns MODRGT rights are required to perform this operation.

dns req touch
Set the live time of the specified directory to the maximal value.

dns req age
Age all DNS objects. All valid object with live time zero will be destroyed. Only allowed
with the unrestricted super capability.

dns req setlookup
Lookup rownames in a set of directories. The dirs argument is a list of (dir cs,rowname)
tuples. The function returns the resolved rows list with (status,time,capset) tuples.

PROGRAMMING INTERFACE

[err: status ∗
cs: capset ∗
path rest: string] = dns req lookup ∼server : dns server→

∼priv : privat→
∼path : string

[err: status ∗
nrows: int ∗
ncols: int ∗
colnames: string array ∗
(string ∗ rights bits array) list] = dns req list ∼server : dns server→

∼priv : privat→
∼firstrow : int

[err: status] = dns req append ∼server : dns server→
∼priv : privat→
∼name : string→
∼cols : rights bits array→
∼capset : capset

[err: status ∗
newcs: capset] = dns req create ∼server : dns server→

∼priv : privat→
∼colnames : string array

[err: status] = dns req discard ∼server : dns server→
∼priv : privat

[err: status] = dns req destroy ∼server : dns server→
∼priv : privat

[err: status] = dns req chmod ∼server : dns server→
∼priv : privat→
∼cols : rights bits array→
∼name : string

ML-LIBRARY: SERVER.CMA 190

[err: status] = dns req delete ∼server : dns server→
∼priv : privat→
∼name : string

[err: status] = dns req replace ∼server : dns server→
∼priv : privat→
∼name : string→
∼newcs : capset

[err: status] = dns req age ∼server : dns server→
∼priv : privat

[err: status] = dns req touch ∼server : dns server→
∼priv : privat

[err: status ∗
cols: rights bits array] = dns req getmasks ∼server : dns server→

∼priv : privat→
∼name : string

[(status∗int∗capset) list] = dns req setlookup ∼server : dns server→
∼dirs : (capset ∗ string) list

Module dependencies

➤ Amoeba
➤ Bytebuf
➤ Capset
➤ Cmdreg
➤ Dblist
➤ Mutex
➤ Stderr
➤ Dns common

ML-LIBRARY: SERVER.CMA 191

Module: Dns server rpc ML-Library: server.cma

This module provides a generic server loop for the DNS server. The inbuf size and outbuf size argu-
ments specify the size of the request and reply transaction buffers. Commonly set to dns BUFSIZE.

PROGRAMMING INTERFACE

[unit] = server loop ∼server : dns server→
∼sema : semaphore→ . server wait sema /
∼nthreads : int→ . number of server threads /
∼inbuf size : int→ . request buffer size /
∼outbuf size . reply buffer size /

Module dependencies

➤ Amoeba
➤ Bytebuf
➤ Capset
➤ Cmdreg
➤ Dblist
➤ Mutex
➤ Rcp
➤ Stdcom
➤ Stdcom2
➤ Stderr
➤ Thread
➤ Dns common
➤ Dns server

Example

(∗
∗∗ A simple DNS server example. Directories are not saved to disk.
∗)

open Amoeba
open Stdcom
open Stderr
open Thread
open Rpc
open Capset

ML-LIBRARY: SERVER.CMA 192

open Dns common
open Dns server
open Dns server rpc

let ndirs = 1000
let ncols = 3
let colnames = [|"owner";"group";"world"|]
let stdcolmask = [|Rights bits 0xff;

Rights bits 0x2;
Rights bits 0x4 |]

let init () =
let refnildnsdir = ref nildnsdir in

let super = dns create super ∼name:"example"
∼ndirs:ndirs
∼ncols:ncols
∼colnames:colnames
∼colmask:stdcolmask

in

let ic = open in "/home/sbosse/.dns super" in
let (super’:dns super) = input value ic in
close in ic;

super.dns getport ← super’.dns getport;
super.dns putport ← super’.dns putport;
super.dns checkfield ← super’.dns checkfield;

let dir table = Array.create ndirs refnildnsdir in

(∗
∗∗ Server functions. Mostly dummies because the server don’t save
∗∗ directories to disk!
∗)

let read dir ∼objnum =
!(dir table.(objnum)),std OK
in

let write dir ∼dir =
dir.dd state ← DDcached;
std OK
in

let create dir ∼dir =
let rdir = ref dir in
dir table.(dir.dd objnum) ← rdir;
std OK
in

let delete dir ∼dir =
dir table.(dir.dd objnum) ← refnildnsdir;

ML-LIBRARY: SERVER.CMA 193

std OK
in

let read super () =
super,std OK
in

let write super ∼super =
std OK
in

let sync () =
std OK
in

let server = {
dns lock = mu create ();
dns super = super;
dns read dir = read dir;
dns write dir = write dir;
dns create dir = create dir;
dns delete dir = delete dir;
dns read super = read super;
dns write super = write super;
dns sync = sync;
}
in

let stat,root = dns create root ∼server:server in

server,dir table,root

(∗
∗∗ The server itself.
∗)

let server () =
let server,table,root = init () in

(∗
∗∗ Create some example directories and entries!
∗)

let s1,d1 = dns create dir ∼server:server ∼ncols:ncols
∼colnames:colnames

in
let s2,d2 = dns create dir ∼server:server ∼ncols:ncols

∼colnames:colnames
in
let s3,d3 = dns create dir ∼server:server ∼ncols:ncols

∼colnames:colnames
in
let cs1 = capset of dir ∼super:server.dns super

∼dir:d1

ML-LIBRARY: SERVER.CMA 194

∼rights:prv all rights

in

let r1 = dns create row ∼name:"testdir1"
∼cols:[|Rights bits 0xff;

Rights bits 0x2;
Rights bits 0x4|]

∼cs:cs1
in
let cs2 = capset of dir ∼super:server.dns super

∼dir:d2
∼rights:prv all rights

in

let r2 = dns create row ∼name:"up"
∼cols:[|Rights bits 0xff;

Rights bits 0xf6;
Rights bits 0x4|]

∼cs:cs2
in
let cs3 = capset of dir ∼super:server.dns super

∼dir:d3
∼rights:prv all rights

in

let r3 = dns create row ∼name:"down"
∼cols:[|Rights bits 0xff;

Rights bits 0x2;
Rights bits 0x4|]

∼cs:cs3
in
ignore(dns append row ∼server:server

∼dir:root
∼row:r1

);
ignore(dns append row ∼server:server

∼dir:d1
∼row:r2

);
ignore(dns append row ∼server:server

∼dir:d1
∼row:r3

);

(∗
∗∗ The root directory.
∗)
let super = server.dns super in
let cs = capset of dir ∼super:super

∼dir:root
∼rights:prv all rights

ML-LIBRARY: SERVER.CMA 195

in
let putcap = cs.cs suite.(0).s object in

Printf.printf "%s" (Ar.ar cap putcap);
print newline ();

server loop ∼server:server
∼inbuf size:30000
∼outbuf size:30000

let =
server ()

ML-LIBRARY: SERVER.CMA 196

Module: Om ML-Library: server.cma

Object manager server → Garbage collection. This module implemts basic concepts for recursive
touchung of reachable objects in an Amoeba directory and filesystem. Also, it initaites aging of un-
reachable/unused objects.

Setup configuration, initialization and looping

First a defintion list with entries of type om config must be build and initialized with the func-
tion om init. After, the real work is done in om loop.

PROGRAMMING INTERFACE

type om config = Om root of string . root directory path> /

| Om root cap of string . same, but cap. specified /

| Om ignore of string . don’t itereate this path /

| Om ignore cap of string . same, but cap. in Ar format /
| Om age of string . age this server spec. with path /

| Om age cap of string . same, but cap. in Ar format /
| Om mintouch of int . min. successfull touched objs. before aging /

type om = { mutable om root: capability ; . start root directory /

mutable om ingore: capability list ; . dirs. to ignore /
mutable om age: capability list ; . age all objects from spec. servers /
mutable om mintouch: int ; . min. touched objs. before aging is started /

mutable om touched: int ; . touched objects /
mutable om failed: int ; . not reachable objects /
mutable om report: string ; . report string /

mutable om passnow: int ; . current pass number /
mutable om passnum: int } . maximal number of passes /

[om] = om init om config list

[status] = om loop om

Example

open Name ;;
open Om ;;

let conf = [
Omroot "/";
Omignore "/hosts";
Ompassnum 10;
Omage "/server/afs";
Ommintouch 10;

ML-LIBRARY: SERVER.CMA 197

]
let om = Om.ominit conf ;;
Om.omloop om ;;

ML-LIBRARY: SERVER.CMA 198

Module: Vamboot ML-Library: server.cma

A simple boot service implementation. This module provides basic functions and types to build up boot
services.
Different kinds of boot objects are supported, with several possible object source locations and speci-
fiers. Also, the destination for a boot object can be specified.
With each object, one or several boot operations can be specified. Each boot object can hold his own
execution environment.

Boot loaction

PROGRAMMING INTERFACE

type boot loc = Obj file path of Cap env.path arg . Either UNIX or Amoeba file /
| Obj cap of string . Amoeba capability in Ar format /
| Obj cap path of Cap env.path arg . Either UNIX or AMoeba cap. /

Source file location

Where to get the binary or script file content.

PROGRAMMING INTERFACE

type boot src = Binary src of boot loc . Unix or Amoeba file system /

| Buf src of string . The source is a buffer content /
| Nil src

Boot object destination system

This type specifies the execution host system: native Amoeba, local UNIX system, machine inde-
pendent bytecode system.

PROGRAMMING INTERFACE

type boot dst = Unix dst . executes on Unix /

| Amoeba dst of boot loc . path for Amoeba process server /

ML-LIBRARY: SERVER.CMA 199

| ML dst of boot loc . ML interpreter program path /

| VM dst of boot loc . Forth script interpreter /
| Nil dst

Boot object status and operations - the environmnt

At least one operation must be done for a boot object, for example one time execution of the binary
program on the given host environment. The started boot object can be polled (still alive?), and
in the case the Boot restart operation is specified, the service is restarted on crash.

PROGRAMMING INTERFACE

type boot op = Boot poll of (boot loc ∗ int) . poll path/cap and time interval /
| Boot start . start the service /
| Boot stop . stop the service /
| Boot restart . restart if polled and crashed /

| Boot fun of (unit→ unit) . execute an internal fun. /

type boot stat = Boot starting
| Boot killing
| Boot up
| Boot down
| Boot restarting
| Boot unknown

type boot env = Env cap of (string ∗ capability) . Amoeba environment /
| Env arg of (string ∗ string) . UNIX environment /
| Env self of string . Handled by the boot server /

Boot object descriptor

One boot object is handled with the following descriptor structure with all necessary information
about the service.

PROGRAMMING INTERFACE

type boot def = { boot name:string ; . name of the boot object /
boot mode:boot exe ; . the boot object type /
boot src:boot src ; . the boot object source /
boot dst:boot dst ; . the boot execution evironment /

ML-LIBRARY: SERVER.CMA 200

boot args:string list ; . program arguments /
boot env:boot env list ; . program cap. env. /
boot ops:boot op list ; . boot obj. operations /
boot deps:string list } . boot obj. name dependencies /

Boot object public interface

To build up a boot server, you only need to build the boot definition structure array and call the
boot init function. This funtions returns the internal bootserver structure. Just call boot start
function to initialize and coldstart (maybe with previous poll check) all specified boot objects. Af-
ter this, a dedicated service loop can be started with the boot loop function (starts a new thread!).
To wait for the shutdown of the boot server, just call the boot wait function.

PROGRAMMING INTERFACE

[bs: boot server ∗
stat: status] = boot init defs: boot def array

[status] = boot start bs: boot server

[string ∗
status] = boot status bs: boot server

[status] = boot stop bs: boot server

[status] = boot loop bs: boot server

[status] = boot loop bs: boot server

[status] = boot wait bs: boot server

Example

(∗
∗∗ Default VAM boot script.
∗)

open Amoeba ;;
open Vamboot ;;
open Unix ;;
open Cap env ;;
open Sema ;;
open Stderr ;;

ML-LIBRARY: SERVER.CMA 201

open Stdcom ;;

let supercap = ref nilcap ;;

let defs = [|
{ boot name = "flipd";
boot mode = Unix exe;
boot src = Binary src (Obj file path (

Unix path "/amoeba/Amunix/bin/flipd"));
boot dst = Unix dst;
boot args = [];
boot env = [];
boot ops = [Boot start;Boot stop];
boot deps = [];
};
{ boot name = "afs unix";
boot mode = Unix exe;
boot src = Binary src (Obj file path (

Unix path "/amoeba/Vam-1.7/bin/afs unix"));
boot dst = Unix dst;
boot args = ["-s"];
boot env = [];
boot ops = [Boot start;

Boot stop;
Boot poll (Obj cap path (

Unix path "/amoeba/afs/.servercap"),5);
];

boot deps = ["flipd"];
};
{ boot name = "dns unix";
boot mode = Unix exe;
boot src = Binary src (Obj file path (

Unix path "/amoeba/Vam-1.7/bin/dns unix"));
boot dst = Unix dst;
boot args = ["-s"];
boot env = [];
boot ops = [Boot start;

Boot stop;
Boot poll (Obj cap path (

Unix path "/amoeba/dns/.servercap"),5);
];

boot deps = ["flipd";"afs unix"];
};
{ boot name = "xafs";
boot mode = Unix exe;
boot src = Binary src (Obj file path (

Unix path "/amoeba/Vam-1.7/bin/xafs"));
boot dst = Unix dst;
boot args = [""];
boot env = [];
boot ops = [Boot start;

Boot stop;
];

boot deps = ["flipd";"afs unix";"dns unix"];

ML-LIBRARY: SERVER.CMA 202

};
{ boot name = "boot pub";
boot mode = Fun exe;
boot src = Nil src;
boot dst = Nil dst;
boot args = [];
boot env = [];
boot ops = [

(Boot fun (fun () →
ignore (Name.name delete "/server/boot");
ignore (Name.name append "/server/boot"

!supercap);
boot info ("supercap = " (̂Ar.ar cap !supercap));
));

];
boot deps = ["flipd";"afs unix";"dns unix"];
};

|];;

let bs,stat = boot init defs ;;
supercap : = bs.boot supercap ;;

boot start bs ;;
boot loop bs ;;
boot wait bs ;;

ML-LIBRARY: SERVER.CMA 203

ML-Library: threads.cma VAM Development System

Portable thread module with mutex and semaphore support and thread synchronisation.

VAM DEVELOPMENT SYSTEM 204

Module: Threads ML-Library: threads.cma

thread create
Creates a new thread and returns the new thread id. Expects a user supplied function.

thread exit
A thread terminates. If the user supplied function returns, this function is called automati-
cally.

thread id
Returns the thread id of the current ruinning thread.

thread switch
Release control to the scheduler which can switch to another ready to run thread. If there
are no other ready threads, the function just returns.

thread sdelay
Delay the current thread for ## seconds.

thread mdelay
Delay the current thread for ## milli seconds.

thread udelay
Delay the current thread for ## micro seconds.

thread delay
Delay teh current thread for at least ## UNIT seconds. The UNIT can be micro-, milliseconds
or seconds. If this call is interrupted, the function returns false.

thread await
A thread wants to wait for an event. The maximal await timeout interval in milli seconds is
specified. If a timeout or an interrupt occurs, this function returns false.

thread wakeup
Raise event ev and wakeup the next thread waiting for this event. If no thread is already
waiting for this event, increment pending variable, so this wakeup call is not lost.

mu create
Create a new locking mutual exclusion.

mu lock
Lock a mutex. If the mutex is already locked, suspend current thread untill mutex is re-
leased by the owner.

mu trylock
Try to lock a mutex. Returns false if the mutex is already locked.

mu unlock
Unlock a mutex.

PROGRAMMING INTERFACE

[tid: int] = thread create ∼func : (’a→’b)→
∼arg : ’a

[unit] = thread exit ()

ML-LIBRARY: THREADS.CMA 205

[int] = thread id ()

[unit] = thread switch ()

[thread event] = thread create event ()

[bool] = thread await thread event→
interval: int

[unit] = thread wakeup thread event

type time unit = SEC
| MILLISEC
| MICROSEC

[bool] = thread delay int→
time unit

[unit] = thread sdelay secs: int

[unit] = thread mdelay msecs: int

[unit] = thread udelay usecs: int

[Mutex.t] = mu create ()

[unit] = mu lock Mutex.t

[bool] = mu trylock Mutex.t

[unit] = mu unlock Mutex.t

ML-LIBRARY: THREADS.CMA 206

Module: Mutex ML-Library: threads.cma

A thread may only lock one time a mutex, else an exception is raised because this is really a program-
mign error! Furthermore, only the owner therda may unlock a mutex. If another try to unlock a not
owned lock, it will raise an exception, too.

PROGRAMMING INTERFACE

[Mutex.t] = create ()

[unit] = lock Mutex.t

[bool] = try lock Mutex.t

[unit] = unlock Mutex.t

ML-LIBRARY: THREADS.CMA 207

Module: Sema ML-Library: threads.cma

Semaphore Module: Thread synchronization using counting semaphores.
These operations implement counting semaphores. What follows is an intuitive explanation of semaphores,
not a formal definition: A semaphore contains a non-negative integer variable, usually called its level.
The two important operations on semaphores are up and down, which increment and decrement the
level, respectively. However, when a call to down would decrement the level below zero, it blocks until a
call to up is made (by another thread) that increments the level above zero. This is done in such a way
that the level will never actually go negative. You could also say that the total number of completed
down calls for a particular semaphore will never exceed the total number of up calls (not necessarily
completed), plus its initial level.

sema create
A semaphore must be initialized to a certain level by calling this function. The initial level
must not be negative.

sema down
Sema down operation. If count value is zero, block current thread untill a sema up operation
was performed (by another thread).

sema trydown
Sema try down operation. If count value is zero, do nothing and return false, else decrement
the semaphore counter and return true.

sema up
Increment a semaphore counter. If currently zero, and threads waiting for this sema, wakeup
them in FIFO order. This case doesn’t increment the sema counter !

PROGRAMMING INTERFACE

type semaphore = <abstract>

[semaphore] = sema create ∼level : int

[unit] = sema down semaphore

[bool] = sema trydown semaphore

[unit] = sema up semaphore

ML-LIBRARY: THREADS.CMA 208

VAM runtime environment

The VAM system consists of the virtual machine and the bytecode system with the already shown
modules. These parts forming the base of the distributed operating system. But, there are many
standalone programs building a full distributed operating system environment, like file and directory
servers, teh boot server used for starting an initial VAM/Amoeba environment, several util programs
and many more.

VAM RUNTIME ENVIRONMENT 209

Building a small Amoeba runtime system VAM runtime environment

With the AMUNIX and VAM system, only a few programs are needed to build up a minimal Amoeba
system. This minimal system consists of the following servers and utils:

flipd
The Unix version of the Amoeba protocol stack. This is the core communcication interface
used for loacl and remot RPC communication between clients and servers.

afs unix
A reimplementation of the Amoeba file server (Unix version), entirely written in OCaML.
The filesystem is currently stored in two generic Unix files (one for the inode table, one for
the filedata).

dns unix
A reimplementation of the Amoeba directory and name server (Unix version). The directory
contents are stored in AFS files. The inode informations are currently stored in a generic
Unix file.

vash
The Amoeba-Unix shell. With vash it’s possible to acces both, the Amoeba and the Unix file
system (the last simply with a /unix prefix), copying files, listing and managing of directo-
ries, performing standard requests (std info, std status, std destroy,...), starting Amoeba
processes (currently only on native Amoeba machines running with an Amoeba kernel), and
many more.

Amoeba Hosts
Of course, but optionally, several machines in the local network running a native Amoeba
kernel.

Here the steps to build this minimal system (read the AMCROSS manual, too):

1. Create the flip administartion directory and the ethernet configuration file. Finally start the flipd
program:

mkdir /amoeba/flip

vi /amoeba/flip/flip.conf
<<eth0 =1:2a:33:42:51:66

flipd
FLIP: Configuration data: eth0 (0:50:fc:1e:39:20)
FLIP: bpf ethernet if 0 has mac address: 0:50:fc:1e:39:20

Ethernet interface 0: bpf #0 has address 0:50:fc:1e:39:20
FLIP: process 1 connected.
FLIP: Debug interface started...
FLIP: Fast Local Internet Protocol Switch:

AMUNIX Version 1.31 BSSLAB Stefan Bosse (sci@bsslab.de).
(Sep 16 2004) Ready.

2. Extend the path settings in the local or global shell profile file:

VAM RUNTIME ENVIRONMENT 210

vi /etc/profile
<< export PATH=$PATH:/amoeba/Vam-<version>/bin

3. Create the Amoeba file system (don’t forget to create the directory specified by the -P option
where the inode and data files will be placed by the server):

mkdir /amoeba/afs

afs unix -c -o -n 100000 -P /amoeba/afs
>>
AFS: Creating Amoeba filesystem...
AFS: Blocksize: 512 [bytes]
AFS: Number of total blocks: 100000
AFS: Number of total inodes: 10000
AFS: inode part → /amoeba/afs/ldisk:00
AFS: data part → /amoeba/afs/ldisk:01
AFS: Writing partition magic headers... Done.
AFS: Writing super structure... Done.
AFS: Resizing data partition... Done.
AFS: Writing inodes...
AFS: Writing live table... Finished.
AFS: Status → status ok

4. Start the AFS server:

afs unix -s -P /amoeba/afs
>>
AFS: Atomic Filesystem Server, Ver. 1.06

Stefan Bosse, BSSLAB (c) 2003
AFS: Initializing...
AFS: Opening partitions...
AFS: inode part → /amoeba/afs/ldisk:00
AFS: data part → /amoeba/afs/ldisk:01
AFS: Reading the Superblock... Done.
AFS: Checking the magic Header... OK.
AFS: Label = "Filesystem"
AFS: Maximal number of files (inodes) = 10000
AFS: Blocksize = 512 bytes
AFS: Total number of blocks = 50000
AFS: Filesystem size = 25600000 bytes
AFS: Reading the livetime table... Ok.
AFS: Creating data and inode caches...
AFS: Inode Cache → 1000 buffers of size 512 bytes
AFS: Data Cache → 100 buffers of size 15360 bytes
AFS: Reading the Inode Table...
AFS: Found 0 used Inode(s). A
FS: Found 0 valid file(s).
AFS: Found 0 free hole(s).
AFS: Biggest hole: 4361728 bytes.
AFS: Total free space: 21808640 bytes.
AFS: cache om thread started...

VAM RUNTIME ENVIRONMENT 211

AFS: starting 4 server threads...
FLIP: process 474 connected.
AFS: Ready.

Note: The default Path setting is: /amoeba/afs ; therefore the -P argument is not needed in this
case.

5. Create the directory tree system:

mkdir /amoeba/dns
dns unix -c -o -P /amoeba/dns -f1 /amoeba/afs/.servercap
>>
DNS: file server 1 capability: 6f:ff:ef:7f:cb:e9/0(ff)/45:4a:ab:e3:7e:67
DNS: file server 2 capability: 0:0:0:0:0:0/0(0)/0:0:0:0:0:0
DNS: Creating DNS tree...
DNS: Blocksize: 512 [bytes]
DNS: Number of total inodes (dirs): 10000
DNS: Writing partition magic headers... Done.
DNS: Writing super structure... Done.
DNS: Writing inode table...
DNS: Writing live table...
DNS: Creating root directory...Ok. Finished.
DNS: Status → status ok

mkdir /amoeba/dns
Note: The default Path setting is: /amoeba/dns; therefore the -P argument is not needed in this
case.

6. Start the DNS server:

dns unix -s -P /amoeba/dns
>>
DNS: Directory and Name Server, Ver. 1.07

Stefan Bosse, BSSLAB (c) 2003
DNS: Initializing...
DNS: Opening partition...
DNS: Inode part → /amoeba/dns/ldisk:02
DNS: Reading the Superblock... Done.
DNS: Checking the magic Header... OK.
DNS: entering one copy mode. FLIP: process 475 connected.
DNS: checking file servers...Ok.
DNS: Label = "Filesystem"
DNS: Maximal number of files (inodes) = 10000
DNS: Blocksize = 512 bytes
DNS: Reading the livetime table... Ok.
DNS: Creating directory and inode caches...
DNS: Inode Cache → 100 buffers of size 512 bytes
DNS: Dir Cache → 30 entries
DNS: Reading the Inode Table...
DNS: Found 0 used Inode(s).

VAM RUNTIME ENVIRONMENT 212

DNS: starting 4 server threads...
DNS: Ready.

7. Add the root capability path of your new crated DNS system to your profile (the unix prefix indi-
cates a Unix path - it must not exist on your UNIX system!):

export ROOTCAP=/unix/amoeba/dns/.rootcap

8. Start the vash shell:

vash
>>
VASH - The Unix-Amoeba Integrator, version 1.11

BSSLAB Stefan Bosse (c) 2003
[/] >>

9. Create some directories and store some capabilities in the DNS system:

[/]
>> mkdir server
[/]
>> mkdir hosts
[/]
>> cd server
[/server]
>> get AFS /unix/amoeba/afs/.servercap
[/server]
>> set AFS afs
[/server]
>> get DNS /unix/amoeba/dns/.servercap
[/server]
>> set DNS dns
[/server]
>> dir -i

Name Info

afs Atomic Filesystem Server: Super Cap
dns DNS server capability
[/server]
>> cd /hosts
[/hosts]
>> mkhost "0:12:23:33:44:66" amhost1
[/hosts]
>> cd amhost1
[/hosts]
>> dir -i

VAM RUNTIME ENVIRONMENT 213

[/hosts]
>> exit

10. You can shutdown the system directly from the Unix system:

std exit /unix/dns/.servercap
std exit /unix/afs/.servercap

VAM RUNTIME ENVIRONMENT 214

VM: vamrun VAM runtime environment

The lowest level of execution environment is build with the OCaML virtual machine called vamrun.
This VM directly executes machine independent ByteCode generated from the ML-Compiler.
This VM provides an automatic memory management. ML programmers don’t need to borrow about
memory allocation and freeing. This is done by the so called garbage collector GC.
On default, all array, list and string accesses are boundary checked. On failure, an exception is raised.
For the case, the programmer doesen’t caught this execption, the program willterminate with an ex-
ception message. Additionally, a backtrace of the current bytecode program is printed to screen. To
enable backtracing of bytecode, you can either specify the -b option for the VM, or set the UNIX envi-
ronment variable:

OCAMLRUNPARAM=b
export OCAMLRUNPARAM

VAM RUNTIME ENVIRONMENT 215

afs unix VAM runtime environment

This is the Unix version of the Amoeba filesystem server AFS (formerly known under the name bullet
server). This is really the most simple file ever created. The filesystem consists of a number of con-
tigous files only refernced with an object number. No file names, and no directory informations are
handled. This is the task of the DNS server.

VAM RUNTIME ENVIRONMENT 216

Usage afs unix

The server knows currently four operation modes:

1. Creation of a new filesystem.

2. Serviceing an already created filesystem.

3. Show status informations about the filesystem.

4. Perform a defragmentation of the filesystem. All files with a filesize greater a threshold will
moved up to the end of the filesystem, if possible.

-s
Start the filesystem (already created).

-P
Partition directory (Unix). Default value: /amoeba/afs

-C
Directory name to store the super capability. Default: /amoeba/afs

-Nd
Number of data cache buffers. Default: 100

-Sd
Size of each data buffer. Default: 30 blocks

-Ni
Number of inode cache buffers. Default: 1000 buffers

-Si
Size of each data buffer. Default: 1 block

-t
Number of service threads. Default: 4 threads

-c
Create a new filesystem.

-n
Number of blocks. Default: 10000 blocks

-b
Block size. Default: 512 bytes. Should be kept untouched!

-i
Number of inodes = maximal number of files. Default: 10000 inodes

-P
Partition directory (Unix). Default value: /amoeba/afs

-C
Directory name to store the super capability. Default: /amoeba/afs

-o
Overwrite an existing filesystem.

AFS UNIX 217

-X
Show the status of all blocks of the filesystem.

-L
show cluster list [graphical default]

-D
Try a defragmentation of the filesystem. All files with a filesize greater a threshold will
moved up to the end of the filesystem, if possible.

-M
maximal filesize theshold. Default: 10 blocks

AFS UNIX 218

dns unix VAM runtime environment

This is the Unix version of the Amoeba Directory and Name server DNS (formerly known under the
name soap server). The directory data infromations are stored in generic AFS (Atomic File system)
objects, therefore a running AFS server is needed. The inode table and administration informations
are kept currently in a generic Unix file.
This server performs name to capability mapping stored in directory like hirarchical structures. Each
directory holds named objects, for example files, other directories, server capabalities, and stores for
each name a capability pair (initially only the first one is used).
The directory server needs an already running AFS server to save his directory objects as usual file
objects.

VAM RUNTIME ENVIRONMENT 219

Usage dns unix

The server knows currently two operation modes:

1. Creation of a new directory system.

2. Serviceing an already created directory and name mapping system.

-s
Start the directory system (already created).

-P
Partition directory (Unix). Default value: /amoeba/dns

-C
Directory name where the super and root capability can be found. Default: /amoeba/dns

-Nd
Number of directory cache buffers. Default: 30

-Ni
Number of inode cache buffers. Default: 100 buffers

-Si
Size of each data buffer. Default: 1 block

-t
Number of service threads. Default: 4 threads

-c
Create a new filesystem.

-b
Block size. Default: 512 bytes. Should be kept untouched!

-i
Number of inodes = maximal number of directories. Default: 10000 inodes

-P
Partition directory (Unix). Default value: /amoeba/dns

-C
Directory name where the super and root capability can be stored. Default: /amoeba/dns

-F1
File server 1 capability. [format: x:x:x:x:x:x/o(r)/x:x:x:x:x:x]

-F2
Optional file server 2 capability. [format: x:x:x:x:x:x/o(r)/x:x:x:x:x:x]

-f1
File server 1 capability path. [Unix file name].

-f2
Optional file server 2 capability path. [Unix file name]

-m
Server mode [1:one (default), 2:two copy mode].

-N
Column names. Default: [Owner Group Other]

DNS UNIX 220

-R
Column rights. Default: [0xff 0x4 0x2]

-o
Overwrite an existing directory system.

DNS UNIX 221

std VAM runtime environment

Simple program which implements an interface to the Amoeba standard commands. Either server or
object capabilities can be retrieved from the local UNIX system directly reading the capability stored
in a UNIX file or from the Amoeba filesystem (AFS/DNS). The Amoeba filesystem is specified with the
UNIX environment variable ROOTCAP.

VAM RUNTIME ENVIRONMENT 222

Usage std

Usage:

std [options] <path1 > [<path2 >]

Path convention:

path: prefixed with /unix → local UNIX filesystem, else Amoeba DNS

Currently supported standard commands:

info
Print an info string of a server or object from a server specified either with it’s Amoebaor the
UNIX path. The string is returned by the STD INFO command.

status
Print status informations of a server or object from a server specified with it’s Amoeba or
UNIX path. The string is returned by the STD STATUS command.

exit
Send an exit command to the specified server to shutdown the server. Normally full rights
are required to shutdown a server.

STD 223

vash VAM runtime environment

The vash program is the main Amoeba operation platform in the Unix environment to control the
Amoeba system. It’s a simple shell with various Amoeba standard operations implemented. This shell
supplies operations on both, the Amoeba and the host Unix filesystem. It’s possible to copy file from
the Unix to the Amoeba environment and vice versa. Nearly all builtin command work properly on
both systems.
Commonly, server capabilities are published in the Amoeba directory and name system, called DNS.
Simply spoken, the DNS (Directory and Name) server performs name to capability mappings. File
data is, in contrast, saved on the fileserver AFS (Atomic Filesystem). The fileserver maps data to ca-
pabilities.
Therefore, nearly all operations supplied by this shell, will lookup server or object capabilities by path
names, for example /server/afs.

VAM RUNTIME ENVIRONMENT 224

Standard operations vash

The following list show the available builtin standard server commands known from the Amobea op-
erating system. There are two ways to resolve the server capability: from the DNS server, or from a
Unix file (the path must start with the /unix prefix). In the latter case, the capability is stored in a
generic Unix file.

Examples

std info /server/afs
std exit /unix/amoeba/afs/.servercap

std info [-h] <path1> [<path2>,...]
Standard Info Request. Displays an information string returned by the server specified with
the path arguments. All server should response to this request.

std status [-h] <path1> [<path2>,...]
Returns the status information returned by the server. Most server will response to this
request.

std exit [-h] <path1> [<path2>,...]
This request performs a shutdown of the specified server, if supported. Only allowed with
the unrestricted server capability.

std destroy [-h] <path1> [<path2>,...]
Destroy the object specified with the path argument.

std age [-h] <path1> [<path2>,...]
Decrement the live time of all objects from the server specified with the path argument. Not
all server support this operation. Only these saveing objects permanently, like the DNS or
AFS server. Objects with zero livetime will be destroyed. Only allowed with the unrestricted
server capability.

std touch [-h] <path1> [<path2>,...]
This is the inverse operation. The livetime of objects specified with the path arguments will
be set to the maximal livetime value. The maximal livetime is an internal server setting.

std params [-h] <serverpath> [-s <paramname>:<paramval>]
This request modifies or show internal server settings.

VASH 225

Directory operations vash

There are serveral operations on directories and files. Always, objects from the Unix filesystem must
start with the /unix prefix.

Example

cp /unix/amoeba/build/amcross/kernel/workstation/kernel /kernel/ws
cd /kernel
dir -l
dir /unix/etc

cp [-h -o -f] <source> <target>
This operation copies a source file to the target place. Currently, the target path must con-
tain the final file name. The source or the target path can be within the Unix file system.
The -o option allows the overriding of the target, and the -f destroys a previously existing
target. The difference: the first option only change the directory entry, the second deletes
the file object, too.

ls — dir [-h -l -i -r -c] <path1> [<path2>,...]
Show the directory listing or the object information specified by the path argument(s). There
are different displays controlled by the options: the -l option results in a long listing with
the directory entry names and the creation time, the -i option shows additional object in-
formations (retrieved by the std info request), the -r option shows the column rights of the
directory entries, and the -c option shows the capabilities of the directory entries.

mkd — mkdir [-h] <path1> [<path2>,...]
Create a directory.

rm — del [-h -d -f] <path1> [<path2>,...]
Remove a row entry from a directory. This is not compareable with the Unix rm command.
The -d allows the removing of a directory or of a server capability not reachable currently.
The -f option destroys the object mapped by the removed row entry (== Unix rm /etc/hosts)
.

cd <path>
Change the current working to directory to path. Also recognized: - and ..

c2a [-h] <path1> [<path2>,...]
Prints the object capability specified by the path in a human friendly format.

a2c [-h] ”0:0:0:...CAP-format” <path>
Appends a capability in string format to the specified path.

VASH 226

Environment variables vash

There is a simple way in vash to handle capabilities with environment variables, similar to those al-
ready known from the Unix shell, but with the different, that they hold capabilities, rather strings.

get [-h -c] <envname> <path or cap string>
This command reads a capability, either lookuped by a filesystem path, for example /server/dns,
or directly with a string representation of the form 0:0:0../1(ff)/1:1:.., in an environment
variable.
<environment variable> := <path cap> — <cap string>.
The capability string must be used together with the -c option. The filesystem can be either
the Amoeba or the Unix filesystem.

put [-h] <envname> <path string>
This command writes a capability from an environment variable to the filesystem (path
string).
<path cap> := <environment variable>. The filesystem can be either the Amoeba or the
Unix filesystem.

print env [-h] <envname1> [<envname2> ...]
This command prints the capability conent of an environment variable.

VASH 227

Program and script execution vash

With vash, the user can start Amoeba programs on native Amoeba hosts. The binary file must be
currently an AFS file.

ax [-h -v -E <earg>] <hostpath> <progpath> [-<progargs>,..]
First, a kernel capability must be specified (hostpath), for example /hosts/dio, or simply
the host name without a path (assuming the default host path /hosts). Next, the binary
file must be specified (progpath), for example /utils/io. Finally, program arguments can be
specified. Because at least a process wants to print informations on the standard output and
error channel, there must be a terminal (TTY) server. Vash is provided with a simple TTY
server (requires starting vash with the -t option to enable the server inside vash). The TTY
environment is automatically set to the internal server capability. Otherwise, another TTY
server can be specified (for example the one in the kernel /hosts/dio/tty:00).

VASH 228

vax VAM runtime environment

The vax util can be used to start native Amoeba programs directly from the UNIX environement. For
this purpose, it supplies a terminal server TTY and a reduced file server AFS, mapping the program
UNIX file to an AFS object. Additionally, some kind of process control is performed. Vax is also re-
sponsible to build up the stack segemtn for the native Amoeba process (needed for the kernel process
server which loads the stack segement as a usual data segment from the AFS server!).
To start a native Amoeba program file located on the UNIX filesystem, the path preceeded with /unix
must be provided with the program imgae filename and the host name of the native Amoeba machine.
This host name (and the corresponding object capability) must be present in the root Amoeba filesys-
tem (commonly the AFS/DNS UNIX filesystem used within the VAM system). The default lookup path
for the host capability is /hosts.
The recently started Amoeba process needs usually a minimal capability environment consiting of the
Termnial- (TTY) , Random- (RANDOM) and Time Server (TOD) capability. The first is provided
by vax, the latters commonly by the kernel. The last two are resolved automatically by vax. The capa-
bility can be set/overriden with the -E option.
Also VAM bytecode programs can be started. In this case, the virtual machine (for the nativa Amoeba
target - VAMRAW) must be specified. Either using the -vm option or the environment variable VAM-
RUN.
Path convention for binaries:

/unix/...
located on local UNIX filesystem,

/..
located on the root AMoeba filesystem, specified with the ROOTCAP environment variable.

VAM RUNTIME ENVIRONMENT 229

Usage vax

vax [-h -v -k] [-E NAME =PATH] [-S NAME=STR] [-vm <vmpath >]
<host > <prog > <prog arguments >

-E
Add environment capability name <capname> lookuped from <path>. NAME=% resolves
the default capability from the kernel host directory (only standard caps: TOD,RANDOM,TTY,PROC,...).

-S
Add string environment variable (the same type as with UNIX).

-k
Boot a new kernel image on given host machine.

-vm
Path to the target system vamrun machine. Alternatively use the VAMRUN environment
variable to specify it.

<host>
Either absolute kernel host root path or host name, found in the Amoeba filesystem: Default
host path: /hosts

<progpath>
UNIX or Amoeba path and filename of the native Amoeba or bytecode program binary.

VAX 230

Examples vax

vax -E TTY =% juki01
/amoeba/Amcross/driver/i86 pc/cnc /hosts/juki01

vax -k juki01 /amoeba/Amcross/kernel/i86 pc/workstation -noreboot:1

VAX 231

vdisk VAM runtime environment

A virtual disk server for UNIX. This server provides an Amoeba virtual disk interface for a local UNIX
device, like an harddisk or a compact flash memory card. Normally, this server resides within the
Amoeba kernel and is coupled to the low level device drivers of permanent storage devices.
The virtual disk server is needed for the bootdisk server implementing a simple boot filesystem, for in-
stalling kernels, or for implementing an Amoeba filesystem (AFS and DNS) using a local UNIX device.

VAM RUNTIME ENVIRONMENT 232

Usage vdisk

vdisk [options] <device >

-H
Specify the host path directory in the Amoeba filesystem directory to store the vdisk capa-
bilities in. The default value is: /hosts/ <UNIX host name >

-b
Blocksize in bytes. Default value: 512 Bytes.

-n
Number of service threads. Default value: 4 threads.

-chs #c,#h,#s
If the storage device contains already a valid Amoeba filesystem, the vdisk server is capable
to retriev the (physical/logical) geometry informations of the device. If no so, teh user must
specify the geometrical data: number of cylinders (c), number of heads (h), number of sectors
(s).

-i
Print disklabel and partition informations of the disk.

-v
Verbose mode. Prints additional informations during run.

-h
Print a help message and exit.

VDISK 233

xafs VAM runtime environment

The xafs program is a graphical file browser and copy util. It’s devided in the Amoeba filesystem
specified with the ROOTCAP environment variable) and the local UNIX filesystem. You can create
and delete directories, copy file from UNIX to Amoeba and vice versa. Additionally, object status
informations can be displayed.

VAM RUNTIME ENVIRONMENT 234

Tutorial: ML-VAM programming

...

TUTORIAL: ML-VAM PROGRAMMING 235

Status chain Tutorial: ML-VAM programming

If a function calls serveral subfunctions, each returning a status value, and the next operation must
only be performed if the previous status is std OK, then OCaML’s exception mechanism should be
used.

Example

let demo () =
try
begin

let stat = fun1 () in
if (stat <> std OK) then
raise (Error stat);
let stat = fun2 () in
if (stat <> std OK) then
raise (Error stat);
...

end
with

| Error err → err

TUTORIAL: ML-VAM PROGRAMMING 236

Server loop Tutorial: ML-VAM programming

The RPC server loop will call special functions depending on the command delivered within the re-
quest header of the RPC. Don’t abuse the if statement to select the current RPC command. Instead
use a modificated match statement:

Example

let stat,n,hdr req = getreq (serverport,reqbuf,reqsize) in
if (stat = std OK) then
begin

match hdr req.h command with
| com when com = std INFO →
begin
... serve the RPC ...
end;
| com when com = myCOM→
begin
... serve the RPC ...
end;
| → ...

end;
ignore(putrep (rep hdr,rep buf,rep size));

TUTORIAL: ML-VAM PROGRAMMING 237

The ManDOC documentation tool

The ManDOC documentation system provides a programming language for the description of the con-
tent of software or other documentation pages, and is built upon the mandoc.cma library, implemented
with ML like all other parts of the VAM system. The implementation provides a ManDOC frontend,
capable of reading the document description language, similar to the ancient roff format, and several
backends for formatted output of the document content, like LaTex, HTML and terminal text output
for online help support. This document you’re currently reading was written and formatted using the
ManDOC tools.
Most ManDOC commands consist of a two character dot and antidot pair with mirrored command
name, for example:

.S1

.NA Section name .AN

.1S

Each dot and antidot command must be surrounded by at least one space character, otherwise the
command is ignored.
There is no strict document structure. But there are generic sections of different depth and a manual
page section. Within a section, text lines build paragraph blocks, just like with LaTex. There are spe-
cial blocks used beside text paragraphs, for example lists. Additionally, there is simple table support.
Table 19 gives an overview about the ManDOC elements.

(TAB. 19) DOCUMENT STRCUTURE AND ELEMENTS

Body Sections Special Blocks Text styles
Title S1 Ordered Lists Bold

S2 Unordered Lists Italics
S3 Argument Lists Typewriter
S4 Literature Lists Bold-Italics
Manual Page Figures AsIs
MP Paragraph Tables

Dataformat Tables
Examples
Programming Inter-
faces

One main feature of the ManDOC system is the support of programming interfaces. Only the content
of an programming interface, like a function or structure, must be provided, not the alignment or lay-
out of the single parts (names, arguments,...) of an interface. This feature speeds up documentation of
programming manuals considerable.

THE MANDOC DOCUMENTATION TOOL 238

Sections The ManDOC documentation tool

A ManDOC document is divied in sections like with any other structured formatting systems. But
there is no strict convention to handle the depth of sections and the order. You can usee the ManDOC
system for formatting of simple manual pages and books, too.
Each section is started enclosed with a command pair, shown in table 20. The next command which
follows the first section command is the name of the section, enclosed with the name command pair.
Generic text paragraphs need no special environment, in contrast to latex or html. They are consist
just of text elements.

(TAB. 20) MANDOC SECTIONS

Command pair Description
.TL <cont > .LT Title of the document (optional)
.S1 <cont > .1S Generic Section 1
.S2 <cont > .2S Generic Section 2
.S3 <cont > .3S Generic Section 3
.S4 <cont > .4S Generic Section 4
.MP <cont > .PM Manual Page
.MA <cont > .AM Manual Page Paragraph
.NA <text > .AN Title name of a section

A manual page environment consists of several manual page paragraphs with a paragraph name. The
manual page has a hierarchy depth comparable with the S3 section, and each manual page paragraph
is like the S4 section.

EXAMPLE Sections

.S1
.NA The first section .AN
Here comes text of the first paragraph.
And another section.
.S2
.NA A subsection .AN
More text...
.2S

.1S

THE MANDOC DOCUMENTATION TOOL 239

Special blocks The ManDOC documentation tool

Within sections or generic paragraphs there are some special blocks, for example for including of im-
ages. Images can be optionally included in figure environments with an additional text header. Other
common environments like lists are supported, too.

Figures
An adjusted figure environemnt with an image and a explanation text paragraph. Includes
the image environment and the text line. The generic format of a figure environment:

.FG
.PI
.NA <image name> .AN
.IP
<figure description paragraph >

.GF

Tables
There is limited support of tables inside the ManDOC system. Tables consist of rows and
columns. The print layout of the table depends on the used backend. The generic format of
a table environement:

.TB
.TR
.TC <row 1 col 1 > .CT
.TC <row 1 col 2 > .CT
.RT
.TR
.TC <row 2 col 1 > .CT
.TC <row 2 col 2 > .CT
.RT

.BT

Data Format Tables
Can be used for formatted data structure representations. Enables the usage of column
groups. The cell width in character units must be specified in the necessary header. Each
data column entry must specify the cell width in cell units (1,2,3...). A number greater than
1 means a column group. Generic format:

.DF
.TH
.DE .VE <width in char units col 1 > .EV .ED
.DE .VE <width in char units col 2 > .EV .ED
.HT
.DR
.DE .VE <width in cell units > .EV <text > .ED
.DE .VE <width in cell untis > .EV <text > .ED

THE MANDOC DOCUMENTATION TOOL 240

.RD
.FD

Examples
A special example environment with an optional title name exists. The text in this environ-
ment will be displayed as is with indention using spaces.

.EX
.NA <title text > .AN
<preformatted text lines >

.XE

Lists
There are four types of lists: ordered, unordered, argument and literature lists. Each list
consists of an list environment and list items:

.OL
.LI <item1 > .IL
.LI <item2 > .IL

.LO

The argument and reference lists have named list items (the first part of these list items
must be a name specifier).

.AL
.LI .NA <name> .AN <item1 > .IL
.LI .NA <name> .AN <item2 > .IL

.LA

Lists can be nested, with same or different kinds of lists.
Example

The Example paragraph provides preformatted text, for example source code. The title name
is optional. In contrast to generic text paragraphs, the preformatted text includes white
spaces! There is an example at the end of this section.

.EX
.NA Pipes .AN
echo "" | file

.XE

Html
Native HTML source can be included affecting only the HTML backend.

Tex
Native LaTex source can be included affecting only the LaTex backend.

THE MANDOC DOCUMENTATION TOOL 241

(TAB. 21) MANDOC FIGURES AND EXAMPLE

Command pair Description
.FG <cont > .GF A figure environemnt (with image)
.PI <cont > .IP An image name. Optional included in an

figure environment.
.EX <cont > .XA An example environment.

(TAB. 22) MANDOC GENERIC TABLES

Command pair Description
.TB <cont > .BT A simple table environment.
.TH <row> .HT Table header (title text).
.TR <row> .RT One row of a table.
.TC <col > .CT One date entry (column) of a table row.

(TAB. 23) MANDOC DATAFORMAT TABLES

Command pair Description
.DF <cont > .FD A simple table environment.
.DH <row> .HD Table header specifies cell widths.
.DR <row> .RD One content row of this table.
.DE <col > .ED One date entry (column) of a table row.
.VE <int val > .EV Cell width value.

(TAB. 24) MANDOC LISTS

Command pair Description
.OL <cont > .LO An ordered list.
.UL <cont > .LU The same as an unordered list.
.AL <cont > .LA An argument item list.
.RL <cont > .LR A litertaure/reference list.
.LI <cont > .IL One list item of a list.

(TAB. 25) MANDOC SPECIAL SOURCE

Command pair Description
.HS <cont > .SH Html source.
.TS <cont > .ST LaTex source.

THE MANDOC DOCUMENTATION TOOL 242

EXAMPLE Special Blocks

.S1
.NA The first section .AN
Here comes text of the first paragraph.
And another section.
.S2
.NA A subsection .AN
Now a figure follows.
.FG
.PI .NA vam am detail.eps .AN .IP
(Fig.1) All the components of the VAMNET system together
.GF
Now we have an example block:
.EX
.NA My example .AN

int c;
int fun() {

int a =0;
return a;

};

.XE
An ordered list:
.OL
.LI Here comes the first list item .IL
.LI and the next oneIL
.OL
But an argument list has this format:
.AL
.LI .NA Arg1 .AN the first named list item .IL
.LI .NA Sec2 .AN and the second one. .IL
.LA
.2S

.1S

Here is an example for native HTML source code included in the ManDOC document:

.HS
<P>
More informations ...

</P >
.SH

and the result (only visible in HTML output):

THE MANDOC DOCUMENTATION TOOL 243

Paragraph elements The ManDOC documentation tool

Within paragraphs there are only text and some special elements, for example a forced paragraph
break. Some simple font specifiers exist: bold, italic, bolditalic and typewriter text.
Special symbols, for example greek letters, can be included with their latex names. See latex docu-
mentation for details. The printed output can depend on the backend file format. Html or generic
text output have only limited support of special symbols. It’s possible to make a page link to another
section. For this case, the referred section name must immediately followed by a label name. The
reference mechanism depends on the used backend and can be limited or non existing.

(TAB. 26) MANDOC SPECIAL PARAGRAPH ELEMENTS

Command pair Description
.SX <text > .XS A special symbol (with latex names).
.RF <text > .FR Page reference to a section with a given

label name.
.LB <text > .BL The label name of a section.
.NL Paragraph break.
.VE <text > .EV A special value. Needed for some com-

mand environments.
.B <text > .R Bold font style text.
.I <text > .R Italics font style text.
.BI <text > .R Bold Italics font style text.
.T <text > .R Typewriter font style text.
.[<text >.] Keep text as is (typewriter style).
.SB <text > .BS Subscript style.
.SP <text > .PS Superscript style.

EXAMPLE Paragraph elements

.S1
.NA The first section .AN
.LB S1013 .BL
Here comes .B bold .R text of the first paragraph. .NL
Here starts a new paragraph. And another section.
.S2
.NA A subsection .AN
See section 1 .RF S1013 .FR for details. Sometimes the
greek symbol .SX alpha .XS is needed!
.2S

.1S

THE MANDOC DOCUMENTATION TOOL 244

Programming Interfaces The ManDOC documentation tool

One main advantage of the ManDOC system is the support of preformatted programming interfaces.
Only the content of a function, data type or data structure must be specified. The user must not be
concerned about the proper layout of this programming interface. This is done by the ManDOC back-
ends. Supported languages are ML (with class and object support) and C.
Programming interface entries are collected in an interface environment. All programming interfaces
expect a name specifier and some arguments. Functions expect at least one return argument (ML:
multiple return arguments means a return tuple). Argument can be followed by a comment.

Functions
Generic format (here: ML, C allows only one return argument - of course):

.IF
.NA <function name > .AN
.RV <ret 1 > .VR
.RV <ret 2 > .VR
.AR <arg 1 > .RA
.AR <arg 2 > .RA

.FI

A ML function argument can be also in the uncurried form (data tuple):

.IF
.NA <function name > .AN
.RV <ret 1 > .VR
.RV <ret 2 > .VR
.AV <arg 1 > .VA
.AV <arg 2 > .VA

.FI

Types and structures
Generic format:

.IT
.NA <type name > .AN
.AV <type 1 > .VA
.AV <type 2 > .VA

.TI

THE MANDOC DOCUMENTATION TOOL 245

(TAB. 27) MANDOC PROGRAMMING INTERFACES

Command pair Description
.IN <content > .NI Programming interface environment.
.IF <cont > .FI ML Function
.IV <cont > .VI ML Value
.IE <cont > .EI ML external value
.IT <cont > .TI ML type list
.IS <cont > .SI ML structure
.IX <cont > .XI ML exception
.IM <cont > .MI ML module
.MC <cont > .CM ML object class
.MT <cont > .TM ML class method
.OB <cont > .BO ML class object
.CF <cont > .FC C function
.CV <cont > .VC C variable
.CY <cont > .YC C type defintion
.CS <cont > .SD C structure
.CH <cont > .HC C Header

(TAB. 28) MANDOC PROGRAMMING INTERFACE ARGUMENTS

Command pair Description
.AR <text > .RA Curried argument (functions, types,

... : C,ML)
.AV <text > .VA Uncurried argument (tuple: only

ML)
.RV <text > .VR Fucntion return value (C,ML)
.MU Mutable structure entry (within ar-

gument, ML)
.PV Private class entry (ML)
.VT Virtual class entry (ML)
.(∗ . ∗) Argument comment (within argu-

ment: C,ML)

EXAMPLE Programming Interface

.IN
.NA ML and C .AN
.IF
.RV port .VR
.NA ml port new .AN
.AR () .RA

THE MANDOC DOCUMENTATION TOOL 246

.FI

.IF

.RV int .VR

.NA c port new .AN

.AR () .RA

.FI
.NI

THE MANDOC DOCUMENTATION TOOL 247

Programming interface The ManDOC documentation tool

The ManDOC system is entirely implemented with ML. There are the ftonend module doc core, and
several backends for various output formats: doc latex for latex, doc html for html and doc txt for ascii
text (terminal) output.
First, all the ManDOC input text must be devivded in atoms simply by breaking all the text in a
space separated token list, and then parsed and converted to an internal structure represenation.
This is done with the atoms of file and the tree of atoms functions, respectively. The prepared internal
structure of the dcoument is finally passed to the desired backend function, for example tex of tree to
produce formatted output. The result is written into an file.

THE MANDOC DOCUMENTATION TOOL 248

Module: doc core Programming interface

The backends functions can be controlled with several options, at least the output file name is specified
with an option ([H]: Html, [L]: Latex).

PROGRAMMING INTERFACE Options

type doc options = Doc single . One single output file [H] /
| Doc multi s1 . One file for each new section S1 [H], Pagebreak [L] /
| Doc multi s2 . One for each section S2 [H], Pagebreak [L] /
| Doc multi s3
| Doc multi s4
| Doc multi mp
| Doc with toc . Print a table of content /
| Doc link ref . Linked references /
| Doc Main of string . Main filename without extension /

| Doc pdftex . Latex with pdf target /
| Doc color . Colored output /

The public interface consists of the following functions. First the input text (either from a string or
read from a file) is split into atoms, and followed by the mean parser function.

atoms of text
Returns a list of all lines from ’text’, and each list member is a string list of text atoms
[delimited by spaces].

atoms of file
Reads the text from a file and convert it to an atoms list.

tree of atoms
Builds a structure tree from the atom list of the text.

PROGRAMMING INTERFACE Basic types

type structure attr = T Bold
| T Italic
| T BoldItalic
| T Type
| T AsIs
| T Subscript
| T Superscript

type structure content = S Empty

PROGRAMMING INTERFACE 249

| S Text of string
| S Body
| S Title
| S TOC
| S S1
| S S2
| S S3
| S S4
| S MP
| S MP paragr
| S Figure
| S Table
| S DataFormat
| S Interface
| S Example
| S Preform
| S ML Fun Interface
| S ML Ext Interface
| S ML Type Interface
| S ML Exc Interface
| S ML Struc Interface
| S ML Method Interface
| S ML Object Interface
| S ML Module Interface
| S ML Class Interface
| S C Hdr Interface
| S C Fun Interface
| S C Var Interface
| S C Type Interface
| S C Struc Interface
| S Attribute
| S OList
| S UList
| S ArgList
| S LitList
| S List Item
| S TableHead
| S TableRow
| S TableCol
| S TableNoRulers
| S DataHead
| S DataRow
| S DataEntry
| S Value
| S Name
| S Mutable
| S Private
| S Virtual
| S CurArg
| S UnCurArg
| S RetArg
| S NL
| S TAB
| S Link

PROGRAMMING INTERFACE 250

| S Ref
| S Label
| S Comment
| S Image
| S Symbol

type structure block = { mutable s parent: structure block option ;
mutable s childs: structure block list ;
mutable s content: structure content ;
mutable s attr: structure attr list ;
mutable s line: int ;
mutable s name: string ref }

type section names = Sec s1 of string
| Sec s2 of string
| Sec s3 of string
| Sec s4 of string
| Sec mp of string

PROGRAMMING INTERFACE Functions

[atoms: string list] = atoms of text ∼text : string

[atoms: string list] = atoms of file ∼fname : string

[tree: structure block] = tree of atoms ∼atoms : string list

[unit] = print tree tree: structure block

PROGRAMMING INTERFACE 251

Module: doc latex Programming interface

The latex backend creates a tex source file which must be translated with the latex typesetting system
into the device independent interchange format dvi, and finally with the dvips program into postscript.
Alternatetively, the output can be perpared for the pdflatex system to produce pdf output instead dvi.
The tex or pdf output filename must be set with the Doc Main option. An optional section list can be
specified for the case, only a part of a document (a subsection for example) should be formatted, and
the sub document context must be specified.
The Doc color option may not be used together with the Doc pdflatex option due to a bug in the pdflatex
system!

PROGRAMMING INTERFACE

[unit] = tex of tree ∼ds : structure block→
∼options : cod options list→
∼sections : section names list

PROGRAMMING INTERFACE 252

Module: doc html Programming interface

The html backend creates either one (huge) html file or several html files breaked by section bound-
aries, specfied with the Doc multi sX options.
The main output filename must be set with the Doc Main option. An optional section list can be spec-
ified for the case, only a part of a document (a subsection for example) should be formatted, and the
sub document context must be specified.
Currently, this backend produces only HTML 4 transitional output without CSS support. In the case
of a multifile output, there are navigation bars on the beginning of each file (content up and index
link), and at the end for the next following or the previous section of the same section level, if any.

PROGRAMMING INTERFACE

[unit] = html of tree ∼ds : structure block→
∼options : cod options list→
∼sections : section names list

PROGRAMMING INTERFACE 253

Debugging

DEBUGGING 254

VAM Debugging

There are several ways to get informations about the state and to manipulate the state of VAM pro-
cesses:

➤ The Db Module: simply prints information to the standard output channel of the process depend-
ing of a debug level.

➤ The inline debugger using the Debugger module. Using the Amoeba RPC system, external pro-
grams can connect to this simple debugger. For example the current thread states with stack
traces can be requested.

DEBUGGING 255

VAM-Debugger VAM

Each VAM-ML program can start an internal builtin debugger for both getting state informations
and setting for example thread states, variable contents and so on. Currently only information man-
agement is implemented. To use this debugger, all modules MUST be compiled and linked with the
additional debug information flag ’-g’!
The debugger is located in the ML-Module Debugger from the server library. A program being able to
debug must call the Debugger.init debugger function to start a server thread waiting for requests on a
server port generated from a string of size 8. This is the private port of the server. The port name,
only consisting of valid characters ’a’-’z’,’A’-’Z’,’0’-’9’, randomly generated, is printed on the standard
out channel of the process. Using this portname, the internal debugger thread can be accessed from
any other process in the VAM/Amoeba environment.
The currently most powerfull client function is the Debugger.debug trace function. This function prints
the current thread states and the stack trace of the specified process.
The following example shows the usage of this debugger interface. To get information about the cur-
rent thread states of a VAM process, simply call the debug trace function within the vam toplevel
system with the published port name.
The internal debugger of the target process will examine the current stack of each thread and tries to
find a valid entry module, that means a ML function currently calling an external C function which
blocks this thread, for example a thread waiting for a locked mutex. If there is such an entry function
(marked with the key word Entry Module), the stack is iterated up to the stack top (using the stack-
size debug informations supplied from the compiler), or untill a non resolved debug event was found,
that means a function address without any debug informations, like module name, source location and
other informations. All found and recognized function frames with their source module name, line and
char position within the source file, are printed.
If there is no information about the current ML function, the debugger tries to find a valid function
code address on the stack. On (maybe doubtfull) success, this function is marked with the key word
Find Module. From this new starting point within the stack, the stack is iterated upto the top (using
again the stack size debug informations supplied from the compiler) to find more function frames.
Other informations in the thread trace are the VM registers PC and SP, the program counter and the
stack pointer respectively. Together with informations from the kernel about threads of a process, it’s
possible to solve many thread related runtime problems, for example dead locks. The following exam-
ple gives an impression of such a problem.

EXAMPLE VM thread debugging

The AFS server was started with the ’-d’ option, which starts the debugger
thread:

% vax /hosts/geo01 afs -s -d
DEBUGGER: Portname="S9oXQMko"
DEBUGGER: service thread started...
AFS: Atomic Filesystem Server, Ver. 1.09

(C) 2003 BSSLAB Stefan Bosse
AFS: Initializing...
AFS: Opening partitions...

Now, from another console using vam, the current thread states can be
requested simply typing:

VAM 256

% vam

=========== VAM system ===========
[Version 1.7 (Build date Jan 6 2005)]
Written by Stefan Bosse (sci@bsslab.de)
(c) 2003 by BSSLAB

Use ’help "help"’ or ’help "intro"’ to get more informations.
Loading initial environment...
Loading online help system...
Ready.

[] Debugger.debug trace ”S9oXQMko” ;;
Current Thread 1 >>>>

STACK: HIGH=0x400ac050 LOW=0x400a4050
REG: SP=0x400ac00c PC =0x40142cdc
Entry Module Debugger Line = 101 Pos = 24 Stacksize = 10

Other Thread 0 >>>>
STACK: HIGH=0x400bde00 LOW=0x400b5e00
REG: SP=0x400bdd60 PC =0x4014ed14
Entry Module Main Line = 304 Pos = 27 Stacksize = 9
Module Main Line = 491 Pos = 16 Stacksize = 27

Other Thread 6 >>>>
STACK: HIGH=0x40431da0 LOW=0x40429da0
REG: SP=0x40431c54 PC =0x401292c8
Find Module Afs cache Line = 816 Pos = 26 Stacksize = 5
Module Afs vdisk Line = 1598 Pos = 55 Stacksize = 3
Module Afs server Line = 831 Pos = 66 Stacksize = 17
Module Afs server rpc Line = 234 Pos = 65 Stacksize = 32
Module Thread Line = 90 Pos = 14 Stacksize = 5

Other Thread 5 >>>>
STACK: HIGH=0x4041b4a0 LOW=0x404134a0
REG: SP=0x4041b35c PC =0x401292c8
Find Module Afs vdisk Line = 1786 Pos = 38 Stacksize = 5
Module Afs server Line = 334 Pos = 54 Stacksize = 7
Module Afs server Line = 655 Pos = 58 Stacksize = 13
Module Afs server rpc Line = 205 Pos = 54 Stacksize = 30
Module Thread Line = 90 Pos = 14 Stacksize = 5

Other Thread 4 >>>>
STACK: HIGH=0x403b3af0 LOW =0x403abaf0
REG: SP=0x403b3a64 PC =0x4013cce4
Entry Module Afs server rpc Line = 123 Pos = 70 Stacksize = 22
Module Thread Line = 90 Pos = 14 Stacksize = 5

Other Thread 3 >>>>
STACK: HIGH=0x4039d0b0 LOW=0x403950b0
REG: SP=0x4039d024 PC =0x4013cce4
Entry Module Afs server rpc Line = 123 Pos = 70 Stacksize = 22
Module Thread Line = 90 Pos = 14 Stacksize = 5

VAM 257

Other Thread 2 >>>>
STACK: HIGH=0x40394110 LOW=0x4038c110
REG: SP=0x4039

4018 PC=0x401292c8
Find Module Afs vdisk Line = 1118 Pos = 38 Stacksize = 1
Module Afs cache Line = 1980 Pos = 44 Stacksize = 8
Module Afs cache Line = 2005 Pos = 49 Stacksize = 2
Module Hashtbl Line = 141 Pos = 13 Stacksize = 4
Module Hashtbl Line = 144 Pos = 19 Stacksize = 6
Module Afs cache Line = 2015 Pos = 25 Stacksize = 5
Module Afs vdisk Line = 2245 Pos = 55 Stacksize = 1
Module Thread Line = 90 Pos = 14 Stacksize = 5

%vash
>> kstat -m /hosts/geo01
...
Process 1:
prio =1 nthr =7 nrun =0 flags =0
Tid Pri Sys Event Mutex Timeout StkBot StkTop Flags
57 11 27 3d27fb0S 3d29000 3d31000 0
55 11 27 3b56100 3988000 3990000 0
54 11 27 3b560d0 39a0000 39a8000 0
58 11 -1 290110 39b8000 39c0000 0
56 11 -1 28ffe8 39d1000 39d9000 0
53 11 27 3b560d0 39e9000 39f1000 0
42 11 -1 28f7d0 3c01000 3c09000 0
...

VAM 258

VX-Kernel Debugging

There are several ways to get informations about the state of the kernel:

➤ Kernel statistics accessible with the KSTAT request from the kernel system server if compiled
with STATISTICS enabled:

0 dump 3c59x statistics
3 dump 3c9xx statistics
9 dump 3c509 statistics
A dump event info
C flip rpc dump
E Ethernet flow control statistics
F flip routing table
G flip group dump
I flip interface
M dump mutex info
N flip network dump
P packet pool usage
R dump rtl8129/8139 statistics
S dump software timer info
X IPC statistics
Y dump ndp statistics
b dump random seed bit info
c flip rpc statistics
d dump ei8390 statistics
e dump Ethernet statistics
f flip fragmentation dump
g group statistics
i flip interface statistics
k flip rpc kid dump
l dump Lance statistics
m dump thread table
n flip network statistics
p flip rpc port dump
r dump hardware timer statistics
s dump segtab
t dump all hardware resources
u print uptime
v print version
w raw flip interface dump
x dump I/O ports
y dump I/O memory
z dump IRQ list

➤ Kernel tracing accessible from the kernel system server if compiled with TRACING enabled:

1. Thread trace
2. Ethernet packet trace

DEBUGGING 259

3. FLIP message trace

DEBUGGING 260

References

[KAS93]
M.F. Kaashoek, R. van Renesse, H. van Staveren, and A.S. Tanenbaum FLIP: an Internet-
work Protocol for Supporting Distributed Systems ACM Transactions on Computer Systems,
pp. 73-106, Feb. 1993.

[AMSYS]
Amoeba 5.3 System Administration Guide

[AMPRO]
Amoeba 5.3 Programming Guide

[COU98]
G. Cousineau, M. Mauny The Functional Approach to Programming Cambridge Press,
1998

[Fab99]
Software: Fabrice Le Fessant, projet Para/SOR, INRIA Rocquencourt.

[OCAML305]
Software: OCaML version 3.05, Xavier Leroy et al., projet Cristal, INRIA Rocquencourt

REFERENCES 261

