
VAMNET: the Functional Approach to Distributed

Programming.

Dr. Stefan Bosse

BSSLAB - Independent Research Laboratory, Bremen, Germany

31 October 2005

Abstract

This article gives a design overview of a new reliable distributed
operating system environment, combining the world of functional and
distributed programming using a virtual machine approach for hiding
system dependencies, offering rapid prototyping facilities. The basic
operating system concepts used are derived from the Amoeba operating
system by Andrew Tanenbaum and his work group, developed 20 years
ago. VAMNET is not only a native operating system. It is a hybrid
solution for expanding widely used operating systems like UNIX with
a distributed execution environment.

Distributed operating system and programming, functional ML
programming language, virtual machine environment, heterogeneous

computer networks.

1 Introduction

1.1 Overview and Motivation

Distributed programming and execution environments play an increasing
role ever since computers can be coupled in networks. But today, there
are only two main solutions for distributed communication and program-
ming: specialized hardcore distributed operating systems, like Amoeba [7]
or Plan9 [2], or specialized programs and environments enabling distributed
programming like PVM [4] and MPI as a hybrid extension to the underlying
operating system.

A special operating system will probably give the best performance and
the cleanest approach, but lacks standard software and enough hardware
device drivers known from todays desktop operating systems. Especially
the lack of device drivers in the i86-PC world is a hard constraint. While
this article was written, several new hardware devices were designed and
pushed to the market!

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 1 - 2006



The second solution with the hybrid approach avoids these constraints.
But most common solutions are not very well integrated in the underlying
operating system concept, they can only provide special solutions. Further-
more, they mostly use the IP protocol family for interprocess communica-
tion, not very well suited for distributed programming. The main disadvan-
tages are the user network configuration needed to communicate between
computers and a lack of performance capabilities for distributed communi-
cation. Additionally, most hybrid solutions have a complicated and heavy
weighted programming interface. Combining distributed and native operat-
ing system interfaces and methods is not fully supported.

Not enough, the native and the conventional hybrid approach have an-
other serious drawback: for N system architectures (and operating systems
in the case of a hybrid solution), N binary programs must exist. Each time
a program is modified, it must be recompiled N times! The imperative C
programming language commonly used in all programming environments
results in best performance, but it is not today’s solution for solving high
level and abstract problems. C binary programs are system-dependent, and
due to error-proned memory pointer arithmetics and buffer overflow prob-
lems, C programs are not reliable. Like most other imperative programming
languages C provides no automatic memory allocation and deallocation, one
barrier for rapid prototyping. The low abstraction level of C and missing
modularization features can lead to an unstructured and inefficient program
implementation in large-scale problems.

To avoid all these constraints, a new hybrid approach was chosen com-
bining the following concepts and components:

1. Basic concepts from the distributed native operating system Amoeba
[7], developed by Prof. Andrew Tanenbaum et al. from the Vrije Uni-
versiteit, Amsterdam. Especially the for distributed purposes only
developed high performance Fast Local Intranet Communication
Protocol (FLIP) [1] and the Remote Procedure Call (RPC)
interface (layered on the top of FLIP), just consisting of three basic
functions, together with the ingenious simple-to-use capability object
concept is a good starting point to implement distributed program-
ming concepts, not only inside the native Amoeba operating system.
The basic concepts are layered around the client-server approach.

2. These Amoeba concepts were implemented using the functional pro-
gramming language OCaML [5] from the INRIA institute, France.
It is a ML dialect with an objective class extension (an extension con-
cept comparable with C++ on the top of C) and an easy to handle
module system. ML hides usually all memory access and allocation.
It is a strongly typed language. This feature avoids common inconsis-
tencies in algortihm and program implementation and leads to a more

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 2 - 2006



structured and cleaner programming style. OCaML provides elemen-
tary functions for list, string, array, and other more complex data type
manipulations like data tuples. There are a large number of modules
implemented in ML providing Amoeba functionality.

3. ML programs are compiled into architecture and system-independent
bytecode. This bytecode is executed using a stack based virtual ma-
chine (VM), a relatively small native binary program, written in C to
give maximal performance and a clean and simple approach to extend
the virtual machine with already existing customized C library code
and routines. The virtual machine is responsible for the loading and
execution of bytecode programs, for automatic memory allocation and
deallocation using a garbage collection method. The OCaML garbage
collector combines Stop&Copy and Mark&Sweep methods [10]. To-
gether with (2), the Virtual Amoeba Machine (VAM) environ-
ment was built, combining functional and distributed programming
features. Since source code can be compiled and executed on the fly,
rapid prototyping is possible.

4. The native VX-Amoeba Kernel. It is a standalone Amoeba mi-
crokernel providing basic Amoeba concepts for a raw Amoeba process
environment: enhanced (compared to the original Amoeba) thread
and process scheduling and control, device drivers, memory manage-
ment, FLIP, RPC. Currently only the i86-PC system architecture is
supported. It’s therefore best suited for hardware reduced embedded
systems, like the PC104 technology widely used in industrial control-
ling applications. Unlike UNIX systems the VX-Kernel requires no
root filesystem located on disks.

5. The underground communication layer consisting of an enhanced ver-
sion of FLIP and RPC is implemented both inside the VX-Kernel and
on the top of existing operating systems in hosted mode, for example
UNIX like systems like Linux and FreeBSD. The latter case is real-
ized with the so-called AMUNIX glue layer, written entirely in C.
It consists of: an Amoeba thread implementation AMUTHR, fully
compatible with the native Amoeba-Thread system located inside the
VX-Kernel, the client part interface for RPC, several Amoeba basic
and utility functions, like the capability management and server stubs.
The FLIP protocol stack was restructured and divided into a (small)
system-dependent and in a main system-independent part. Therefore,
most source code can be shared between the VX-Kernel and the AMU-
NIX implementation. Under AMUNIX, FLIP is executing as a generic
user space process.

The VAM virtual machine program is implemented on the top of the
AMUNIX- layer, mainly using RPC and AMUTHR.

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 3 - 2006



6. Many Amoeba system servers were implemented in ML using
VAM. They can operate using both the raw VX-Kernel and the AMU-
NIX system without recompilation enabling rapid and reliable proto-
typing. Examples for servers are the new Amoeba Filesystem AFS
and the directory and name server DNS. These servers either use local
image files or access physical partitions to store file data. Further-
more there is a boot server responsible for starting and controlling a
completely or partialy distributed environment.

The advantages of this hybrid system and its components are:

• The FLIP protocol operates connectionless and determines network
routes automatically. The FLIP protocol stack acts always as a router
between networks[1]. There is no necessity for user configuration.
FLIP and RPC communication takes place between processes inde-
pendent of their loaction. FLIP is not limited to the Ethernet tech-
nology. Any kind of data transfer media can be used for networking
(USB, point-to-point devices ...).

• For special (embedded) hardware systems, like PC104 industrial com-
puter boards, the raw VX-Kernel environment is best suited. They
can be used to build up distributed measuring and control services
with direct support of special hardware devices connected to a net-
work. The VX-Kernel provides an unique and simple device driver
interface, both inside and outside the kernel (user space processes),
using the common RPC communication, too.

• Common desktop operating systems can be still used, extended with
Amoeba concepts. The Virtual Amoeba Machine provides full support
for Amoeba and UNIX programming interfaces. If VAM operates on
the raw VX-Kernel, the UNIX part is currently restricted.

• VAM hides architecture and system dependencies. Only the virtual
machine must be compiled for each target architecture and host oper-
ating system.

• There are different ways of executing VAM bytecode programs: di-
rectly from a UNIX shell on the local host, or using the VAX util for
remote program start on a native VX-Amoeba host, and finally (under
development) on any host (native Amoeba or UNIX, both local and
remote), using Amoebas process descriptor technology and the virtual
machine itself acting as a process server (see implementation section
for details).

• The functional programming language can simplify and speed up soft-
ware development (see section 2.4 for a detailed explanation).

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 4 - 2006



All these components are loosely coupled and can be combined depending
on customer demands. With this hybrid operating system environment it is
possible to build up distributed measuring and control systems and parallel
numeric clusters in an uncomplicated and simple way with good scalability,
or it just provides a convenient way for research and education in distributed
programming. Parallel clusters can be built using both generic desktop
computers and specialized computer hardware (bare bone computers with
only CPU, memory and network) [11].

A comparable approach of such a hybrid system was already introduced
with Bell Labs Inferno and Plan9 operating system environment. Plan9 has
some similarities with Amoeba, though it is more UNIX-orientated using
a generic file concept rather than an unique object concept. Inferno uses
a virtual machine approach with automatic memory management, too, and
can operate stand-alone or on the top of existing host operating systems [12].
The new programming language Limbo developed for Inferno inherited some
main features from ML, like strong typing and limit and bound checking,
and a module system, but the functional concept of programming is entirely
missing. And the Inferno approach is more monolithic than the VAMNET
approach. VAMNET components are loosely coupled and can be combined
like a modular construction kit, in contrast to Inferno, which needs a full-
sized execution environment on each computer node.

Plan9 and Inferno use a user orientated security approach, different from
Amoebas more universal object based and user independent capability ap-
proach. Additionally, Plan9 and Inferno use a different kind of communica-
tion network protocol, called 9P/Styx. This protocol approach is focused to
file objects similar to NFS, and is IP based with the necessity of knowledge
about network topology and network configuration [3].

1.2 The Complete System

The following pictures 1 and 2 show all the components contained in the
hybrid VAMNET system and introduced in the previous section, both the
native Amoeba system and the addon approach, executing, for example, on
the top of the Linux operating system.

On the native Amoeba side, the protocol stack FLIP, the RPC layer and
process and thread management is located inside the VX-Kernel, for example
executing on a PC104 embedded system. The kernel can be booted from
an EEPROM-like medium, for example an IDE compatible CompactFlash
card. On the desktop operating system side with a UNIX host operating
system, the FLIP protocol stack is implemented as an external process. Each
AMUNIX and VAM process has its own thread management (AMUTHR).
AMUNIX processes must communicate with the FLIP protocol stack using
UNIX sockets. The VAM application programs can be executed both on the
native AMOEBA and the AMUNIX environment without recompilation.

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 5 - 2006



VX-Amoeba Kernel

LIBAM

AMOEBA Appl.

LIBAM

VAM

VAM Appl.

RPCFLIP

A

B

AMUTHR

Figure 1: The native Amoeba operating system side with two application
programs, one native (A) and one bytecode (B).

UNIX Kernel

LIBC

LIBAMUTHR

LIBAMUNIX

AMUNIX Appl.

LIBC

LIBAMUTHR

LIBAMUNIX

VAM

VAM Appl.

UNIX System

LIBC

LIBAMUTHR

LIBAMUNIX

FLIP

RPCU

U B

Figure 2: The UNIX operating system side with addon layers AMUNIX
+ VAM software with two application programs, one native (U) and one
bytecode (B), and the FLIP server process in the middle.

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 6 - 2006



VX-Amoeba Kernel

AFS
File Server

UNIX Kernel

UNIX System

VX-Amoeba Kernel

Hadrware
Device
Driver

VAM
Application

AFS
File Server

BOOT
Boot Server

BOOT
Boot Server

FLIP

UNIX Kernel

UNIX System

BOOT
Boot Server

FLIP

Network Ethernet

VAM
Application

VAM
Application

VAM
Application

DNS
Directory & 
Name Server

Figure 3: Several native Amoeba and UNIX nodes connected by a network
with different application and system programs.

Figure 3 shows native Amoeba and UNIX nodes connected with an Eth-
ernet network with distributed filesystems and some VAM application pro-
cesses. All computer nodes melt to one large virtual machine system. The
programmer and user should not be aware of the location of an Amoeba
program. The location dependencies are resolved exclusively by FLIP.

.

2 Implementation Details

2.1 Objects and Communication

The main communication method is the remote procedure call (RPC) using
the message-based client-server-approach. Amoeba needs only three primi-
tives to provide this method: the ’transaction’ function for clients, and the
’getrequest’ and ’putreply’ functions for servers. A server can be any pro-
cess simply by creating a so-called server port, and calling the getrequest

function. A public version of this port (created by a one-way-encryption
method) is published and must be known by a client who calls the transac-

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 7 - 2006



tion function to send a message to a server, stored in a generic data buffer
together with a communication header. Because Amoebas RPC operates
synchronously, a reply is sent back to the client. Requests and replies are
symmetric functions. Both operate with a generic data buffer up to 1GByte
size and a communication header with additional information.

Around RPC, the object capability concept plays an important role. A
server manages objects, for example files, processes or terminals, and each
object is associated with a capability. This capability contains the server
port (public version), an object number, a rights field specifying allowed
operations with this object, and a security field for protecting the rights
field against modification. The RPC communcation layer is stacked on the
top of the FLIP protocol stack. The FLIP protocol stack is implemented
directly inside the VX-kernel. Processes running on the top of this kernel
simply call kernel functions in order to get access to RPC/FLIP. FLIP is
partially weaved with the process management (some process signals can be
transmitted using FLIP).

In the UNIX environment, this method is not desirable because of the
strong operating system dependency this method envolves. Here, another
way was chosen: the FLIP protocol stack is entirely implemented in user
process space. Clients wanting to send messages or listen for requests con-
nect to the FLIP box process using generic UNIX sockets. Each process
thread doing RPC transfer has its own socket link. On the other side, the
FLIP box is connected to the network layer of the host operating system
using either raw sockets (Linux) or the packet filter interface (FreeBSD).

2.2 AMUNIX

The AMUNIX layer consists of:

• the AMUNIX glue library with the AMUTHR module implementing
native Amoeba threads for UNIX user processes with identical pro-
gramming interface and behaviour, additionally some basic Amoeba
functions and server stubs (predefined RPC requests for various servers
and commands), and the client part of the RPC interface (adapted to
the AMUNIX FLIP socket concept),

• the FLIP protocol stack daemon program,

• a development environment,

• some C-based programs derived from the original Amoeba operating
system, like aps, the Amoeba process displayer, and some utilities for
standard commands. They are not needed for the distributed environ-
ment explained here.

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 8 - 2006



With the AMUNIX environment it is possible to execute Amoeba pro-
grams (recompiled using the AMUNIX library) directly under the UNIX
operating system.

2.3 The VX-Kernel

This native microkernel based on the kernel present in the original Amoeba
system, finished in the year 1996 [8]. The kernel provides the following
services:

• Thread, Process and Memory management (segment-based),

• Device drivers (network, storage, display),

• FLIP protocol stack, RPC and group communication layer,

• several system servers accessible from the outside using RPC.

In the past seven years, the kernel was restructured and improved. Sev-
eral new features were added:

• Support of user space device drivers was introduced.

• A new priority-driven scheduler was implemented: still strictly non-
preemptive scheduling policy inside the kernel, but with three levels of
process and thread priorities: HIGH, NORM, LOW. The process pri-
ority has a higher weight than the thread priorities. Hardware event-
driven threads and high level interrupt handlers always have the high-
est priority and are scheduled first. Processes have a time slice, and
can be scheduled preemptively. User process threads can be scheduled
optionally preemptively, too, if they are not actual executing in kernel
mode.

• A local high performance interprocess communication module for local
user space device drivers and kernel communication. The communica-
tion primitives are similar to the ones known from the RPC interface.
But in contrast they support shared memory segments for ultra fast
’data transfer’.

• More bus systems (PCI) and hardware devices (network) are supported
on the i86-PC architecture. 100 MBit/s ethernet is provided, and
support for USB communication is under development.

Together with the Amoeba system library it is possible to directly ex-
ecute native Amoeba binaries on the top of the VX-Kernel. No additional
external servers are required. There is a cross-compiling environment AM-
CROSS to build native Amoeba libraries, kernels and programs.

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 9 - 2006



2.4 VAM and ML

The Virtual Amoeba Machine consists of these parts:

• the virtual machine itself linked with either the AMUNIX layer or the
AMOEBA system library - the VM is built around a library concept
and can be easily extended and rebuilt,

• all OCaML standard modules, Amoeba modules implementing all
Amoeba concepts (except low-level threads and RPC) entirely using
ML: all functionality around capabilities, standard operations, buffer
methods, encryption, several server stubs, process execution and many
more. With these modules it is possible to build distributed systems.
Additionally, an UNIX module exists to provide all UNIX system calls
independent of the underlying operating system. VAM provides an
abstraction of the underlying hardware resources.

• of course a ML compiler, written entirely in ML, too (therefore
portable and system-independent), which can be used (and embed-
ded) for on-the-fly compilation during runtime,

• an interactive toplevel system used mainly for ML script execution
(the toplevel system contains the ML compiler),

• many system servers implemented in ML and utility programs needed
for system administration, building an operable distributed operating
system environment,

• a complete development environment,

• and last but not least a graphical user interface based on the X11
system (XLIB/VXLIB).

OCaML belongs to the class of functional languages, which means that
functions are first-class values, and they can be treated like any other data
type. ML is not purely functional because it includes assignments and side-
effects. ML is a strongly typed language. This is an important feature for
reliable programming and systems. ML programs are safe in some kind: no
illegal state instructions or memory access faults can occur, and array, list
and buffer bound checks are performed during runtime. Moreover, ML uses
type inference, which means that the ML compiler determines data types
during compilation and there is no necessity for an explicit type declaration
of values. OCaML is a fast execution environment, commonly faster than na-
tive compiled C++ code, and even faster than JAVA-Code [13] (though these
benchmarks compare different fruits). Because the OCaML compiler pro-
duces operating system and machine-independent bytecode, OCaML pro-
grams are highly portable (though there is a native compiler version, too).

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 10 - 2006



Just a recompiliation of the virtual machine is necessary for a new operating
system or machine environment, maybe with slight changes in source code.
The virtual machine itself is entirely written in C to facilitate its adaption
to new environments.

The success of the implementation of operating system concepts using
only ML depends strongly on the kind and structure of the operating system.
For example, UNIX-like operating systems consist of a monolithic structure.
Nearly the complete system functionality is managed inside the kernel. For
each system function there is one kernel system call. A ML implementa-
tion of such operating system concept just leads to wrapper functions going
through the virtual machine. But in contrast, message based systems like
traditionial microkernels, for example the VX-Amoeba kernel, require only
a few message-passing functions. Operating system functionality is imple-
mented here mostly with server processes outside the kernel. It is a simple
job to implement servers, like a fileserver, entirely in ML. Only few message-
passing functions will pass through the virtual machine to the underlying
operating system kernel.

Additionally, there is an object orientated approach which extends the
ML core. The OCaML programming environment has some more advan-
tages over traditional imperative programming languages like C. First of
all, OCaML provides a powerfull but simple to use module system which
provides strong and clean modularization and abstraction, and therefore en-
ables scaling software to large sizes. And even if a microkernel approach is
used: operating systems (and services) always tend to enlarge from an initial
thousand line block up to millions of source code lines during development.
It seems this is a natural law.

With a pure functional- and recursive-based approach together with lists,
it is difficult to implement system programs like servers with a lot of repeti-
tive server loops and data tables. Apart from providing first-class funtions,
lists and recursion, OCaML supports imperative constructs such as loops,
references and arrays. Finally, it supports polymorphic type inference, a
prerequisite for abstraction and modularization [9].

2.5 Distributed Process Execution

The basic Amoeba concept of process handling is built around the so-called
process descriptor (PD) [7]. Initially the PD is present in the binary file.
It contains information about the target architecture, the owner capability
(empty as long as not running), and a segment descriptor (SD). This de-
scriptor contains information about all memory segments currently present
in the process. In the case of the initial binary file, these are the text, data
and stack segment. During runtime, more memory segments can be added.
Additionally, the PD contains a thread descriptor giving information about
the currently present process threads. A new process is started simply by

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 11 - 2006



reading and passing the process descriptor to the process server, for ex-
ample inside the VX-Kernel. The kernel process server reads all memory
segments from the fileserver and starts the process using the PD informa-
tions. Because the stack segment contains the process environment (string
and capability environment variables), it is created temporarily and read
from file server, too. The stack initialization must be done by the client
program which starts the process initially, for example a boot server.

This process concept differs from UNIX like operating systems. There-
fore, the PD concept can not be used directly in the UNIX environment.
But an AMUNIX binary can be directly started on the local UNIX host
(native code, compiled only for this architecture), for example from a shell,
and VAM bytecode programs executed by the VM, too. AMUNIX/VAM
programs need no special runtime environment.

To enable starting of native VX-Amoeba binaries or VAM bytecode pro-
grams on a remote VX-Kernel, the VAX tool was implemented. This pro-
gram does all steps necessary for starting PD based programs on a na-
tive Amoeba host. The binary is either loaded from an already running
AFS/DNS filesystem (the original way), or with some hooks from the local
UNIX filesystem. In the latter case, the VAX tool provides a temporary file
server which maps UNIX to Amoeba file behaviours. Optionally, a virtual
terminal server is invoked to display program output on the UNIX console,
from which VAX was started.

But to this point a main feature is missing: starting bytecode programs
on any host (Amoeba or UNIX) from any host in the same way. The solution
of this problem is quite simple: a process server must be added to the vir-
tual machine and on each host at least one virtual machine must be started
in the so-called process server mode. In this case, the VM waits for a pro-
cess execution request following the PD guidelines. Each bytecode program
is wrapped with a process descriptor containing only two segments: the
bytecode segment (unmodified output from the ML compiler), and a stack
segment, filled with the process environment in an architecture-independent
way. This PD is sent to the process server inside the VM, and the VM loads
the bytecode from the fileserver in the same way as the server inside the na-
tive VX-Kernel. In contrast to the kernel process server, the VM can only
execute one program at the time. Therefore, enough VMs must be started
in process server mode, for example by a boot server executing on this host.

2.6 Portable Graphical User Interface

The graphical user interface for VAM uses the X11 protocol and is imple-
mented entirely with ML, too. No native X11 system library is invoked.
There are two client libraries: the low level client X11 core library imple-
menting the X11 protocol and client-server communication [6], and a high-
level widget library VXLIB built around classes. The fundamental methods

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 12 - 2006



Machine Components
A AMD-Duron 650 MHz CPU, 64MB

RAM, 3COM905 100MBit/s Ether-
net,native VX-Amoeba

B Celeron 700 MHz CPU, 64MB
RAM, 3COM905 100MBit/s Ether-
net, native VX-Amoeba

C Celeron 700 MHz CPU, 128MB
RAM, 3COM905 100MBit/s Ether-
net, FreeBSD 4.6 + AMUNIX

D Celeron 700 MHz CPU, 128MB
RAM, 3COM905 100MBit/s Ether-
net, FreeBSD 4.6 + AMUNIX
+ VAM

Table 1: Machine configurations used for performance tests.

are widget containers stored in boxes with either horizontal or vertical align-
ment, similar to TEXs typesetting boxes. All common widgets like buttons
or text labels are supplied. The VXLIB supports two graphic output de-
vices: X11 and postscript. Therefore all windows can be directly printed
into postscript format, usefull for documentation and scientific GUIs, for
example data plots or tables.

The X11 and the VXLIB parts are both system-independent. There
are two communication standards supported: UNIX sockets and Amoebas
virtual circuit technology. Virtual circuits are global (distributed) circular
buffers. Virtual circuit modules are part of the basic VAM system. The
first kind is used on UNIX-like systems, the second for an embedded and
system-independent implementation of the X11 server called VXS (currently
under development) - of course programmed in ML. The VXS program is
connected to a low level graphics engine - here programmed with C for
performance reasons and with system dependent parts (graphics driver).
VXS will operate both on the VX-Kernel and with AMUNIX (here with a
dummy graphics engine with a generic native X11 interface) for test and
evaluation purposes.

3 Performance - the Real Life

3.1 RPC Network Performance

RPC messaging takes place between processes, either locally or remotely.
The measured data transfer rates and the latency relate to realistic endpoint
communication. The test configuration used is shown in table 1.

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 13 - 2006



Transfer Data rate Latency
A → B 11,2 MByte/s 130 µs
B → A 10,6 MByte/s 136 µs
A → C 8,7 MByte/s 270 µs
C → A 9,1 MByte/s 260 µs
A → D 8,7 MByte/s 300 µs
D → A 8,7 MByte/s 300 µs
A → A 136 MByte/s 12 µs
C → C 26 MByte/s 275 µs
D → D 22,4 MByte/s 400 µs

Table 2: RPC performance tests. Measured data are mean values (accuracy
±10%). The latency is the time for one transaction without data load (only
communication header).

The RPC performance was tested using different machine and operating
system configurations, for both the local and the remote communication
case. Data frames (size 1 MBytes) were sent to a server (in only one direction
with data load) using the client transaction function (though a reply without
data load is always present). Table 2 shows the results of RPC data rates
and zero data load RPC transaction latency for each transfer direction.

The shown measurements are example measurements with an accuracy of
about ± 10%. The transfer performance of a RPC message transfer between
two native Amoeba machines (A) and (B) reaches its maximal value. Not
only compared with the following AMUNIX and VAM system addons, also
compared with the maximal physical transfer rate possible of 100MBit/s
ethernet: 11,9 MBytes/s. This result reflects the optimal adaption of the
FLIP protocol stack to the underlying ethernet device drivers.

Communication between the AMUNIX glue layer (C) with a native VX-
Kernel (A) leads only to a slight decrease in performance and latency. The
transfer rate decreases about 20%, and the latency increases about twice.
With additonal VAM (D), there is no significant difference. These results
show the suitability of the ML programming language and the virtual ma-
chine concept for client-server implementations.

Using the RPC system for local communication gives best results with
the native VX-Kernel. The data transfer rates decreases dramatically using
the AMUNIX layer. This is not a surprising result because all data must
be transferred from the client to the FLIP process, and from FLIP to the
server process. In contrast to the native FLIP implementation, data must be
copied several times (with several kernel system traps). But the additional
VAM layer and the virtual machine concept add no significant decrease in
performance.

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 14 - 2006



Bullet AFS
Memory usage 8.8 MByte 10 MByte

Source code lines 7400 9100
Transferrrate 28.6 MByte/s 9.9 MByte/s

Table 3: AFS (ML) and Bullet (C) file server performance. The memory
usage includes the (large) file cache.

3.2 Server Performance

Reference [13] shows benchmark results for various programming languages
using different (mostly short) test code programs. The native version of
OCaML is mostly located under the top ten winners and its speed com-
parable with C++ programs, usually 3-5 times slower than C programs.
But the bytecode version seems to be 10-30 times slower than C code. A
deeper look into the used benchmark source code leads us to expect that
these benchmarks are not very realistic for performance considerations in
real distributed (server based) applications: the C code consists for example
of some ’for loops’, and the ML code, too. No functional features, list sup-
port, automatic memory management and other higher-level functionality
is concerned. The following application orientated performance comparision
between C and ML gives a more suitable impression of VAM application
performance.

A file server, like the original Amoeba Bullet file server (entirely written
in C and highly optimized for read transfer operations) and the new AFS
file server (written entirely in ML and with equal behaviour) are examples
of complex application programs with list, table and a lot of memory man-
agement functionality needed during runtime operation, for example inside
the cache management.

The test configuration consists of a small embedded PC with a 300
MHz Geode low power microprocessor, 64 MByte RAM memory and a 256
MByte CompactFlash Harddisk replacement, operating with the native VX-
Amoeba kernel, using the AFS server (ML, fully interface compatible with
original Amoeba Bullet file server ) and the Bullet Amoeba file server (C,
enhanced version), both executed on the top of the kernel. Previously, one
large file (1MByte size) was created in both filesystems. A test application,
also running on this machine, reads this file multiple times. The time was
measured and the mean transfer rate was calculated. Table 3 shows the
results. The ML bytecode version is only 3 times slower than the highly op-
timized C version of this filesystem implementation, though runtime bound
checking of arrays and buffers inside the virtual machine was enabled.

The number of source code lines of both implementations is compara-
ble, though the AFS fileserver contains a more complex and efficient cache

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 15 - 2006



management.

4 Conclusions

It could be shown that the presented hybrid operating system approach is
suitable for a variety of applications requiring reliable distributed control
and programming features, like distributed controlling services with em-
bedded computers or parallel numeric clusters. VAMNET supports rapid
prototyping because 1.) source code can be compiled and executed on the
fly, and 2.) bytecode programs can be executed on both, the native VX-
Amoeba and AMUNIX environment, regardless of the underlying hardware
and host operating system as a result of the virtual machine concept. The
loss of performance (commonly a factor 3-5 compared with C programs) is
mostly negligible compared with the advantages of functional programming
and the virtual machine approach: type safety and inference, modularity,
runtime bound checking, host operating system independency.

References

[1] M.F. Kaashoek, R. van Renesse, H. van Stveren, A. S. Tanenbaum
FLIP: an Internetwork Protocol for Supporting Distributed Systems

ACM Transactions on Computer Systems, pp- 73-106, Feb. 1993

[2] R. Pike, D. Presotto, K. Thompson, H. Trickey
Plan9 from Bell Labs

UKUUG Proceedings of the summer 1990 Conference, London, Eng-
land, (Jul. 1990)

[3] R. Pike, D. Ritchie
The Styx Architecture for Distributed Systems

Bell Labs Technical Journal, Vol. 4, No. 2, pp. 146-152, (Apr./Jun.
1999)

[4] V.S. Sunderam
PVM: A Framework for Parallel Distributed Computing

J. Concurrency, Practice and Experience, 1990, pp. 315-340

[5] The OCAML language

http://caml.inria.fr/

[6] Fabrice Le Fessant
xlib for Ocaml

projet Para/SOR, INRIA Rocquencourt, 1998

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 16 - 2006



[7] S. J. Mullender, G. van Rossum, A.S. Tanenbaum, R. v. Renesse, H.
van Staveren
Amoeba - A distributed Operating System for the 1990s

IEEE Computer, 14:365–368, May 1990

[8] A. S. Tanenbaum, M. F. Kaashoek
The Amoeba Microkernel

Distributed Open Systems, IEEE Computer Society Press 1994, pp.
11-30

[9] Jason Hickey
Introduction to the Objective Caml Programming Language

2001

[10] Emmanuel Chailloux, Pascal Manoury, Bruno Pagano
Developing Applications with OCaML

O’Reilly France, 2000, prelimenary english translation

[11] Stefan Bosse
The VAMNET Book - the virtual Amoeba Machine Environment,

AMUNIX and the VX-Amoeba System

BSSLAB, http://www.bsslab.de, 2005

[12] Sean Dorward et al.
The Inferno Operating System

Bell Labs Technical Journal, Vol. 2, No. 1, 1997

[13] The Computer Language Shootout Benchmarks

http://shootout.alioth.debian.org, 2005

DOI:10.1145/1151374.1151376 SIGOPS Oper. Syst. Rev. Vol. 40 (3)

Stefan Bosse - 17 - 2006


